Как найти область определения функции?

Таблицы основных результатов

Давайте соберем изученные правила нахождения областей определения в таблицу, так все они будут перед глазами, так их будет проще запомнить и удобно использовать.

Как найти область определения функции?

Еще очень полезен список следствий, которые наиболее практически значимы.

Как найти область определения функции?

В заключении отметим, что часто возникает желание выполнить преобразование выражения, которое находится в правой части формулы, задающей функцию. Их нужно проводить очень аккуратно. Этим мы хотим сказать, что допустимы лишь тождественные преобразования, не влияющие на область определения исходной функции. Например, и y=x+2 — это две разные функции, первая определена на множестве (−∞, 2)∪(2, +∞), а вторая – на множестве всех действительных чисел. Преобразование справедливо только тогда, когда x≠2.

Список литературы.

  1. Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. — 2-е изд., стер. — М.: Мнемозина, 2008. — 287 с.: ил. ISBN 978-5-346-01027-2.
  2. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.

Некогда разбираться?

Графики простейших функций — линейная, параболы, гиперболы, экспоненты, показательные, степенные, логарифмическая, синус, косинус, тангенс, котангенс изучаемых в школе Справочная таблица.

  • ;
  • ;
  •   ;
  • ;
  • ;
Название функции Формула функции График функции Название графика Комментарий
Линейная, прямая пропорциональность y = kx Прямая Cамый простой частный случай линейной зависимости — прямая пропорциональность у = kx, где k ≠ 0 — коэффициент пропорциональности. На рисунке пример для k = 1, т.е. фактически приведенный график иллюстрирует функциональную зависимость, которая задаёт равенство значения функции значению аргумента.
Линейная, прямая пропорциональность со сдвигом y = kx + b Прямая Общий случай линейной зависимости: коэффициенты k и b — любые действительные числа. Здесь k = 0.5, b = -1.
Квадратичная функция y = x2 Парабола Простейший случай квадратичной зависимости — симметричная парабола с вершиной в начале координат.
Квадратичная функция y = ax2 + bx + c Парабола Общий случай квадратичной зависимости: коэффициент a — произвольное действительное число не равное нулю (a принадлежит R, a ≠ 0), b, c — любые действительные числа
Степенная функция y = x3 Кубическая парабола Самый простой случай для целой нечетной степени. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».
Степенная — корень квадратный y = x1/2 График функцииy = √x Самый простой случай для дробной степени (x1/2 = √x). Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».
Степенная — обратная пропорциональность y = k/x Гипербола Самый простой случай для целой отрицательной степени (1/x = x-1) — обратно-пропорциональная зависимость. Здесь k = 1.
Показательная функция y = ex Экспонента Экспоненциальной зависимостью называют показательную функцию для основания e — иррационального числа примерно равного 2,7182818284590…
Показательная функция y = ax График показательной функции а>1 Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 2x (a = 2 > 1).
Показательная функция y = ax График показательной функции 0<a<1 Показательная функция определена для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = 0,5x (a = 1/2 < 1).
Логарифмическая функция y = ln(x) График логарифмической функции — натуральный логарифм График логарифмической функции для основания e (натурального логарифма) иногда называют логарифмикой.
Логарифмическая функция y = logax График логарифмической функции — логарифм по основанию а>1 Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log2x (a = 2 > 1).
Логарифмическая функция y = logax График логарифмической функции 0<a<1 Логарифмы определены для a > 0 и a ≠ 1. Графики функции существенно зависят от значения параметра a. Здесь пример для y = log0,5x (a = 1/2 < 1).
Синус y = sinx Синусоида Тригонометрическая функция синус. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».
Косинус y = cosx Косинусоида Тригонометрическая функция косинус. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».
Тангенс y = tgx Тангенсоида Тригонометрическая функция тангенс. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».
Котангенс y = сtgx Котангенсоида Тригонометрическая функция котангенс. Случаи с коэффициентами изучаются в разделе «Преобразование графиков функций».

Об этой статье

Соавтор(ы):
Штатный редактор wikiHow

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту. wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества. Количество просмотров этой статьи: 212 410.

Категории: Математика

English:Find the Domain and Range of a Function

Italiano:Trovare il Dominio e il Codominio di una Funzione

Español:hallar el dominio y el rango de una función

Português:Encontrar o Domínio e a Imagem de uma Função

Français:définir le domaine de définition et l’ensemble des images d’une fonction

Bahasa Indonesia:Mencari Domain dan Range Fungsi

Печать

Определение

Если на множествеX{\displaystyle X} задана функция, которая отображает множество X{\displaystyle X} в другое множество, то множество X{\displaystyle X} называется областью определения или областью задания функции.

Более формально, если задана функция f{\displaystyle f}, которая отображает множество X{\displaystyle X} в Y{\displaystyle Y}, то есть: fX→Y{\displaystyle f\colon X\to Y}, то

множество X{\displaystyle X} называется областью определения или областью задания функции f{\displaystyle f} и обозначается D(f){\displaystyle D(f)} или domf{\displaystyle \mathrm {dom} \,f} (от англ. domain — «область»).

Иногда рассматривают функции, определенные на подмножестве D{\displaystyle D} некоторого множества X{\displaystyle X}. В этом случае множество X{\displaystyle X} иногда называют областью отправления функции f{\displaystyle f}.

Литература

  • Функция, математический энциклопедический словарь. — Гл. ред. Ю. В. Прохоров. — М.: «Большая российская энциклопедия», 1995.
  • Клейн Ф. Общее понятие функции. В кн.: Элементарная математика с точки зрения высшей. Т.1. М.-Л., 1933
  • <span class=»nowrap»>И. А. Лавров</span>, Л. Л. Максимова. Часть I. Теория множеств // Задачи по теории множеств, математической логике и теории алгоритмов. — 3-е изд.. — М.: Физматлит, 1995. — С. 13 — 21. — 256 с. — ISBN 5-02-014844-X.
  • А. Н.  Колмогоров, С. В. Фомин. Глава 1.. Элементы теории множеств // Элементы теории функций и функционального анализа. — 3-е изд.. — М.: Наука, 1972. — С. 14 — 18. — 256 с.
  • <span class=»nowrap»>Дж. Л. Келли</span>. Глава 0. Предварительные сведения // Общая топология. — 2-е изд.. — М.: Наука, 1981. — С. 19 — 27. — 423 с.
  • В. А. Зорич. Глава I. Некоторые общематематические понятия и обозначения. § 3. Функция // Математический анализ, часть I. — М.: Наука, 1981. — С. 23 — 36. — 544 с.
  • Г. Е. Шилов. Глава 2. Элементы теории множеств. § 2.8. Общее понятие функции. График // Математический анализ (функции одного переменного). — М.: Наука, 1969. — С. 65 — 69. — 528 с.

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие  (так как ).

Пример 9

Найти область определения функции

Решение: в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:Как найти область определения функции?Ответ: область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция  (квадратный трёхчлен из Примера №7) определена на интервалах , а функция  (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа  определены на всей числовой прямой.

Полезная информация: интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля = ). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: .  Если же основание степени  заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение: в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы  относительно оси , приходим к выводу, что неравенству  удовлетворяет интервал  (синяя штриховка):Как найти область определения функции?
Неравенству , очевидно, соответствует «красный» полуинтервал  .

Поскольку оба условия должны выполняться одновременно, то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ: область определения:

Типовое неравенство , как демонстрировалось в Примере №8,  нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для  или .  Также можно добавить какие-нибудь непрерывные на  функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение: составим и решим систему:
Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству  и, согласно второму условию, исключим две точки:Как найти область определения функции?
Значение  оказалось вообще не при делах.

Ответ: область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте 😉

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям: