Корпускулярно-волновой дуализм

Введение[править]

«В конце (XIX-го) столетия казалось, что ответ на вопрос о природе света найден и доказан экспериментально — свет есть распространяющиеся в пространстве электромагнитные волны. Волновая теория света, исходя из такого представления о природе света, на основе общих свойств волновых процессов объяснила такие оптические явления как интерференция света, дифракция света, поляризация света и др.»

«Однако, уже в начале века при исследовании взаимодействия света с веществом были обнаружены такие оптические явления как фотоэффект, эффект Комптона, фотохимические реакции и др. При объяснении этих явлений представления о том, что свет есть распространяющиеся в пространстве электромагнитные волны, оказались несостоятельными. Предсказания волновой теории света пришли в противоречие с наблюдаемыми в экспериментах закономерностями явлений квантовой оптики. Объясняя эти явления, в 1905 г. Эйнштейн выдвинул корпускулярную теорию света, которая, развивая идеи Ньютона о световых корпускулах, рассматривала свет как поток большого числа частиц, названных фотонами. Фотонная теория света легко объяснила все качественные и количественные закономерности явлений квантовой оптики.«

Таким образом, свет есть волны и частицы. Долгое время казалось, что представления об электромагнитной волне и представления о потоке частиц исключают друг друга.

Опыты А. Г. Столетова

В 1888 году А. Г. Столетов впервые систематически исследовал фотоэффект. Он выяснил, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. Он исследовал вещества различной природы и установил, что наиболее восприимчивы к свету металлы: никель, медь, цинк, алюминий, серебро. Для облучения электродов он использовал свет различных длин волн: красный, зеленый, синий, ультрафиолетовый.

Для исследования фотоэффекта он собрал следующую установку: в стеклянный баллон, из которого выкачан воздух, помещаются два электрода.

Внутрь баллона на один из электродов поступает свет через кварцевое «окошко», прозрачное для ультрафиолетового излучения.

На электроды подается напряжение, которое можно менять с помощью потенциометра ​\( R \)​ и измерять вольтметром ​\( V \)​.

К освещаемому электроду (катоду ​\( K \)​) присоединяют отрицательный полюс батареи. Под действием света этот электрод испускает электроны, которые при движении в электрическом поле образуют электрический ток.

Облучая катод светом различных длин волн, Столетов установил закономерности (законы) фотоэффекта, не утратившие своего значения до нашего времени.

При малых напряжениях не все вырванные светом электроны достигают другого электрода (анод А). Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока также увеличивается. При некотором напряжении она достигает максимального значения, после чего перестает изменяться.

Вольт-амперная характеристика (зависимость силы фототока от напряжения)

Из графика видно:

1) сила фототока отлична от нуля и при отсутствии напряжения. Это означает, что часть вырванных светом электронов достигает анода и при отсутствии напряжения, т. е. фотоэлектроны при вылете обладают кинетической энергией;

2) при некотором значении напряжения ​\( U_{нас} \)​ между электродами сила фототока перестает зависеть от напряжения и не изменяется при увеличении напряжения. Максимальное значение силы тока \( I_{нас} \) называется током насыщения. При фототоке насыщения все электроны, покинувшие за 1 с поверхность металла, за это же время попадают на анод. Поэтому по силе фототока насыщения можно судить о числе фотоэлектронов, вылетающих с катода в единицу времени:

где ​\( q_{max} \)​ – максимальный заряд, переносимый фотоэлектронами; ​\( n \)​ – число фотоэлектронов, вылетающих с поверхности освещаемого металла; ​\( e \)​ – заряд электрона;

3) если катод соединить с положительным полюсом источника тока, а анод — с отрицательным, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, а сила фототока уменьшаться при увеличении значения этого отрицательного напряжения. При некотором значении отрицательного напряжения ​\( U_{зап} \)​ (его называют запирающим или задерживающим напряжением) фототок прекращается. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод.

Согласно теореме о кинетической энергии работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

Законы внешнего фотоэффекта

  • Закон Столетова:
    количество электронов, выбиваемых светом с поверхности металла за 1 с, прямо пропорционально интенсивности света и не зависит от частоты падающего света.
  • Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения, а определяется только его частотой.
  • Для каждого вещества существует «красная граница» фотоэффекта, т. е. минимальная частота света, ниже которой фотоэффект невозможен.

«Красная граница» фотоэффекта – наименьшая частота (наибольшая длина волны), при которой начинается фотоэффект:

С уменьшением частоты падающего света (увеличением длины волны) энергия падающих квантов при некоторой частоте (длине волны) может стать равной работе выхода электрона из металла.

«Красная граница» фотоэффекта зависит только от работы выхода электрона из вещества.

Фотоэффект практически безынерционен. Он наступает через 10-9 с от момента освещения катода.

История возникновения

Большой период развития оптики как науки связан с противоборством двух взглядов на природу света. Так в XVII веке имелось две теории света.
Корпускулярная теория, ее сторонником был И. Ньютон, обладавший неоспоримым авторитетом. Ньютон считал свет потоком частиц, которые перемещаются от источника света во все стороны. Ньютон, используя свои представления, объяснил прямолинейность распространения света, но не смог объяснить законы отражения и преломления.

Ярким представителем противоположного направления, представлявшего свет как совокупность волн, был Х. Гюйгенс. Гюйгенс считал свет волной, которая распространяется в эфире, все заполняющей и везде проникающей среде. Теория, предложенная Гюйгенсом, объяснила дифракцию и интерференцию, но не смогла дать объяснение прямолинейному распространению света.

Примечание 1

В течение долго времени не было единого представления о природе света. Корпускулярные теории менялись на волновые. Ни одна теория не могла стать единственной, принятой всеми.

В семидесятых годах XIX века Максвелл изложил свою электромагнитную теорию. Показал, что свет является электромагнитной волной, что было подтверждено опытами. Свет стали считать электромагнитной волной. Волновая теория стала считаться доказанной окончательно.

Однако волновая теория света в ее электромагнитной форме стала недостаточной для толкования всех оптических явлений. Впервые это проявилось при исследовании проблем равновесного (абсолютно черного) излучения. Формулу, которая согласовывается с опытом для всего диапазона волн, предложил М. Планк на основе новых, квантовых представлений. Изначально они касались только природы света, но позднее проникли во все разделы физики. Оказалось, что представления классической физики, которые базируются на основе понятий, связанных с макроскопическими объектами, не применимы или используются с существенными ограничениями в области атомных масштабов. Идеи Планка легли в основу новой физики, квантовой физики.

Так Планк предположил, что излучение и поглощение света веществом происходит конечными порциями — квантами. Согласовывая свою гипотезу с законами термодинамики и электродинамики, Планк принял энергию кванта равной:

где $h$=$6,63\cdot {10}^{-34}Дж\cdot с$ — постоянная Планка. Сам Планк полагал, что квантовые свойства свет проявляет только в актах излучения и поглощения света. Все остальное происходит в рамках теории Максвелла.

Определение 2

Эйнштейн развил квантовую теорию. Он заключил, что и при распространении в пространстве свет ведет себя как совокупность частиц (фотонов), имеющих энергию, которая определяется выражением (1). Это было не простым возвратом к Ньютоновской теории корпускул, так как фотоны принципиально отличаются от частиц в механике. Фотоны имеют волновые свойства. Эта особенность фотонов и называется корпускулярно — волновым дуализмом.

Пример 1

Задание: Световое давление — проявление объемной плотности импульса у волны и закона сохранения импульса при взаимодействии волны с веществом. Какова сила давления (F), которую испытывает зеркальная поверхность, если на нее перпендикулярно падает пучок монохроматического. Поток энергии равен $Ф_e$.

Решение:

Сила давления света может быть вычислена как:

\

где $p$ — величина давления света, $S$ — площадь поверхности. Давление света при нормальном падении равно:

\

где $E_e$ — облученность поверхности, $c$ — скорость света в вакууме, $\rho $ — коэффициент отражения. Для зеркальной поверхности коэффициент отражения равен единице ($\rho $=1). Подставим выражение (1.2) в формулу (1.1), получим:

\

При этом надо учесть, что:

\

В таком случае выражение (1.3) запишем в виде:

\

Ответ: $F=\frac{Ф_e}{c}\left(1+\rho \right).$

Пример 2

Задание: Параллельный пучок света падает нормально на зачерненную поверхность, производя давление p, длина волны света равна $\lambda $. Какова концентрация фотонов в пучке (n)?

Решение:

За основу решения задачи примем выражение, определяющее концентрацию фотонов в пучке света как:

\

где $w$ — объемная плотность энергии излучения, ${\mathcal E}=h\nu $ — энергия одного фотона. Давление света в свою очередь выразим как:

\

где $\rho $ — коэффициент отражения. Из выражения (2.2) получим:

\

Подставим в (2.1) вместо объемной плотности энергии правую часть выражения (2.3), имеем:

\

Энергия фотона выражается через частоту света, следовательно, связана с длиной волны:

\

Подставим энергию кванта в виде, полученном (2.5) в выражение (2.4):

\

Для зачерненной поверхности коэффициент отражения равен нулю ($\rho $=0), выражение (2.6) преобразуется к виду:

\

Ответ: $n=\frac{\lambda p}{hc}.$

III. Элементы квантовой механики и атомной физики Лекции 9,10. Элементы квантовой механики

Известны 4 механики:
классическая или ньютоновская механика,
релятивистская механика (теория
относительности), квантовая механика
и релятивистская квантовая механика.
Первые две механики изучались в I — ой
части курса физики, а сейчас переходим
к изучению квантовой механики.

Квантовая механика
— это механика микромира, механика
движения микрочастиц в микрополях —
атомах, молекулах, кристаллах. Ее можно
рассматривать как основную теорию
атомных явлений.

Опытные факты,
на которых она основывается, отражают
физические процессы, почти полностью
лежащие за пределами непосредственного
человеческого восприятия. Поэтому нет
ничего удивительного в том, что теория
содержит физические понятия, чуждые
повседневному опыту.

Начало создания
последовательной теории атомных явлений
можно отнести к 1924 г., когда Луи де Бройль
предположил, что природа вещества также
является двойственной (корпускулярной
и волновой).

Фотоэффект

Фотоэффект был открыт в 1887 году Г. Герцем.

В опытах с электроискровыми вибраторами Герц установил, что заряженный проводник, освещенный ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов.

Фотоэффект – это явление взаимодействия света с веществом, в результате которого энергия фотонов передается электронам вещества.

Различают внутренний и внешний фотоэффект.

Внутренний фотоэффект – изменение концентрации носителей заряда в веществе.

Внешний фотоэффект – явление вырывания электронов с поверхности вещества под действием падающего на него света.

Природа света[править]

Световая волна представляет собой нелокализованное электромагнитное поле, распределенное по пространству. Объемная плотность энергии электромагнитного поля волны, пропорциональная квадрату ее амплитуды, может изменяться на сколь угодно малую величину, то есть непрерывно.

Свет можно трактовать как поток корпускул (квантов, фотонов), которые во многих физических эффектах проявляют свойства . Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла.

Экспериментально показано, что фотон не является коротким импульсом электромагнитного излучения. Он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Не имеет значение в какой области рассматривать свет. Например, в области зрения и цветного зрения, свет выполняет функции как волны так и частицы — кванта энергии (фотона). Сфокусированная предметная точка на фоторецептор сетчатки, например, мембрану колбочки позволяет глазу отфильтровать, сформировать её значение в виде основных спектральных лучей света RGB согласно их длинам волн, и согласно значениям квантов энергии монолучей (не в цвете), которые в мозгу переводятся в наше ощущение цвета (сфокусированной предметной точки оптического изображения).

Природа света с точки зрения диалектикиправить

С точки зрения диалектической, современная физика отвечает на вопрос о природе света так: свет есть материальный объект, обладающий как волновыми, так и корпускулярными свойствами. Эти свойства в различных физических процессах могут проявляться на различном уровне.

Природа света с точки зрения оптическойправить

Корпускулярно-волновой дуализм
Рис.2. Опыт Комптона. на первом этапе рассеяния излучения на мишени оно ведет себя как поток фотонов, но в измерительном блоке это же излучение как электромагнитная волна испытывает дифракцию на кристаллической решетке.

При определенных условиях, например, в ряде оптических явлений свет проявляет свои свойства как волна. В данных случаях должны рассматривать свет как электромагнитные волны. В других оптических явлениях свет проявляет свои свойства как свойства частиц (корпускулярные). В этом случае свет следует представлять как поток фотонов (квантов). Иногда, оптический эксперимент можно организовать так, что свет будет проявлять в нем как волновые, так и корпускулярные свойства. Действительно, в опыте Комптона (см. рис. 2) на первом этапе рассеяния излучения на мишени оно ведет себя как поток фотонов, но в измерительном блоке это же излучение как электромагнитная волна испытывает дифракцию на кристаллической решетке.

Уравнение Эйнштейна для фотоэффекта

Теоретическое обоснование законов фотоэффекта было дано А. Эйнштейном.

При падении на металл энергия фотона расходуется на совершение работы выхода электрона из металла и на сообщение ему кинетической энергии:

Корпускулярно-волновой дуализм

Если частота световой волны меньше «красной границы» фотоэффекта, то энергии фотона не хватит для того, чтобы вырвать электрон с поверхности металла. Фотоэффект наблюдаться не будет:

Если частота световой волны равна «красной границе» фотоэффекта, то энергии фотона хватит для того, чтобы вырвать электрон с поверхности металла, но не хватит для того, чтобы сообщить электрону кинетическую энергию. Фотоэффект наблюдаться не будет:

Если частота световой волны больше «красной границы» фотоэффекта, то энергии фотона хватит для того, чтобы вырвать электрон с поверхности металла и сообщить ему кинетическую энергию. Фотоэффект будет наблюдаться: .

История развития

Вопросы о природе света и вещества имеют многовековую историю, однако до определённого времени считалось, что ответы на них обязаны быть однозначными: свет — либо поток частиц, либо волна; вещество либо состоит из отдельных частиц, подчиняющихся классической механике, либо представляет собой сплошную среду.

Атомно-молекулярное учение на протяжении своего развития долго оставалось в статусе лишь одной из возможных теорий, однако к концу XIX века существование атомов и молекул уже не вызывало сомнений. В 1897 году Томсон экспериментально обнаружил электрон, а в 1911 году Резерфорд открыл ядро атома. Была разработана боровская модель атома, в которой электрон подразумевался точечной или очень малой частицей. Однако модель Бора была не вполне последовательна, требовалась другая теория.

Что же касается света, то корпускулярная теория света, представляющая световой луч как поток отдельных частиц, была популярна в Новое время — самым известным из её сторонников был внёсший большой вклад в изучение света Исаак Ньютон. Однако в XIX веке были сформулированы принцип Гюйгенса — Френеля и затем уравнения Максвелла, прекрасно описывавшие свет как волну, состоящую из колебаний электромагнитного поля. Взаимодействие электромагнитой волны с веществом успешно описывалось классической теорией поля.

Казавшееся устоявшимся волновое описание света оказалось неполным, когда в 1901 году Планк получил формулу для спектра излучения абсолютно чёрного тела, а затем Эйнштейн объяснил фотоэффект, опираясь на предположение, что свет с определённой длиной волны излучается и поглощается исключительно определёнными порциями. Такая порция — квант света, позднее названный фотоном — переносит энергию, пропорциональную частоте световой волны с коэффициентом h{\displaystyle h} — постоянная Планка. Таким образом, оказалось, что свет проявляет не только волновые, но и корпускулярные свойства.

Французский учёный Луи де Бройль (1892—1987), развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 году гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия E{\displaystyle E} и импульс p{\displaystyle p}, а с другой стороны — волновые характеристики — частота и длина волны.

Более конкретное и корректное воплощение принцип корпускулярно-волнового дуализма получил в «волновой механике» Шрёдингера, которая затем превратилась в современную квантовую механику.

Вскоре Джордж Томсон и Клинтон Джозеф Дэвиссон с Лестером Джермером независимо обнаружили дифракцию электронов, дав тем самым убедительное подтверждение реальности волновых свойств электрона и правильности квантовой механики.

Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 году советскому физику В. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.

Трактовку корпускулярно-волнового дуализма в русле квантовой механики дал физик В. А. Фок (1898—1974):

Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна — частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.

Ричард Фейнман в ходе построения квантовой теории поля развил общепризнанную сейчас формулировку через интегралы по траекториям, которая не требует использования классических понятий «частицы» или «волны» для описания поведения квантовых объектов.

Импульс фотона

Импульс фотона:

Давление света

Максвелл на основе электромагнитной теории света предсказал, что свет должен оказывать давление на препятствия.

Под действием электрического поля волны, падающей на поверхность тела, например металла, свободный электрон движется в сторону, противоположную вектору ​\( \vec{E} \)​.

На движущийся электрон действует сила Лоренца, направленная в сторону распространения волны. Суммарная сила, действующая на электроны поверхности металла, и определяет силу светового давления.

Для доказательства справедливости теории Максвелла было важно измерить давление света. Многие ученые пытались это сделать, но безуспешно, так как световое давление очень мало

В яркий солнечный день на поверхности площадью 1 м2 действует сила, равная всего лишь 4·10-6 Н.

Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 г. Прибор Лебедева состоял из очень легкого стерженька на тонкой стеклянной нити, по краям которого были приклеены легкие крылышки. Весь прибор помещался в сосуд, откуда был выкачан воздух. Свет падал на крылышки, расположенные по одну сторону от стерженька. О значении давления можно было судить по углу закручивания нити. Трудность точного измерения давления света была связана с невозможностью создать вакуум (движение молекул воздуха, вызванное неодинаковым нагревом крылышек и стенок сосуда, приводит к возникновению дополнительных вращающих моментов). На закручивание нити влияет и неодинаковый нагрев сторон крылышек (сторона, обращенная к источнику света, нагревается сильнее, чем противоположная сторона). Молекулы, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны.

Лебедев сумел преодолеть все эти трудности, взяв очень большой сосуд и очень тонкие крылышки. Полученное значение совпало с предсказанным Максвеллом. Впоследствии после трех лет работы Лебедеву удалось осуществить еще более тонкий эксперимент: измерить давление света на газы.

Появление квантовой теории света позволило более просто объяснить причину светового давления. Фотоны, подобно частицам вещества, имеющим массу покоя, обладают импульсом. При поглощении их телом они передают ему свой импульс. Согласно закону сохранения импульса импульс тела становится равным импульсу поглощенных фотонов. Поэтому покоящееся тело приходит в движение. Изменение импульса тела означает, согласно второму закону Ньютона, что на тело действует сила.

Важно!
Опыты Лебедева можно рассматривать как экспериментальное доказательство того, что фотоны обладают импульсом. Хотя световое давление очень мало в обычных условиях, оно является существенным в недрах звезд

При температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения достигает громадных значений и совместно с гравитационными силами обеспечивает стабильное состояние звезд

Хотя световое давление очень мало в обычных условиях, оно является существенным в недрах звезд. При температуре в несколько десятков миллионов Кельвинов давление электромагнитного излучения достигает громадных значений и совместно с гравитационными силами обеспечивает стабильное состояние звезд.

Давление света, согласно электродинамике Максвелла, возникает из-за действия силы Лоренца на электроны среды, колеблющиеся под действием электрического поля электромагнитной волны. С точки зрения квантовой теории давление появляется в результате передачи телу импульсов фотонов при их поглощении:

где ​\( \rho \)​ – коэффициент отражения, ​\( N \)​ – количество всех фотонов, падающих на единицу поверхности в единицу времени.

Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

Развитие
представлений о корпускулярно-волновых
свойствах материи получило в гипотезе
о волновом характере движения микрочастиц.
Луи де Бройль из идеи симметрии в природе
для частиц вещества и света приписал
любой микрочастице некий внутренний
периодический процесс (1924). Объединив
формулы E = hν и E = mc2, он получил
соотношение, показывающее, что любой
частице соответствует своя длина
волны
: λБ= h/mv = h/p, где p- импульс
волны-частицы. К примеру, для электрона,
имеющего энергию 10 эВ, длина волны де
Бройля составляет 0,388 нм.
В дальнейшем
было показано, что состояние микрочастицы
в квантовой механике может быть описано
определенной комплекснойволновой
функцией
координат Ψ(q), причем
квадрат модуля этой функции |Ψ|2определяет
распределение вероятностей значений
координат. Эта функция была впервые
введена в квантовую механику Шредингером
в 1926 г. Таким образом, волна де Бройля
не несет энергию, а только отображает
“распределение фаз” некоего вероятностного
периодического процесса в пространстве.
Следовательно, описание состояния
объектов микромира носит вероятностный
характер, в отличие от объектов
макромира, которые описываются законами
классической механики.

Для
доказательства идеи де Бройля о волновой
природе микрочастиц немецкий физик
Эльзассер предложил использовать
кристаллы для наблюдения дифракции
электронов (1925). В США К. Дэвиссон и Л.
Джермер обнаружили явление дифракции
при прохождении пучка электронов через
пластинку из кристалла никеля (1927).
Независимо от них дифракцию электронов
при прохождении через металлическую
фольгу открыли Дж. П. Томсон в Англии и
П.С. Тартаковский в СССР. Так идея де
Бройля о волновых свойствах вещества
нашла экспериментальное подтверждение.
Впоследствии дифракционные, а значит
волновые, свойства были обнаружены у
атомных и молекулярных пучков.
Корпускулярно-волновыми свойствами
обладают не только фотоны и электроны,
но и все микрочастицы.

Октрытие
волновых свойств у микрочастиц показало,
что такие формы материи, как поле
(непрерывное) и вещество (дискретное),
которые с точки зрения классической
физики, считались качественно
отличающимися, в определенных условиях
могут проявлять свойства, присущие и
той и другой форме. Это говорит о единстве
этих форм материи. Полное описание их
свойств возможно только на основе
противоположных, но дополняющих друг
— друга представлений.

Уравнение Шредингера для стационарных состояний.

Корпускулярно-волновой дуализм

Уравнение
(217.5) называется
уравнением Шредингера для стационарных
состояний.

В это уравнение в качестве параметра
входит полная энергия Е
частицы.
В теории дифференциальных уравнений
доказывается, что подобные уравнения
имеют бесчисленное множество решений,
из которых посредством наложения
граничных условий отбирают решения,
имеющие физический смысл. Для уравнения
Шредингера такими условиями являются
условия регулярности волновых функций:
волновые функции должны быть конечными,
однозначными и непрерывными вместе со
своими первыми производными. Таким
образом, реальный физический смысл
имеют только такие решения, которые
выражаются регулярными функциями 
Но регулярные решения имеют место не
при любых значениях параметра Е,
а
лишь
при определенном их наборе, характерном
для данной задачи. Эти значения энергии
называются собственными.
Решения
же, которые соответствуют собственным
значениям
энергии, называются собственными
функциями.
Собственные
значения Е
могут
образовывать как непрерывный, так и
дискретный ряд. В первом случае говорят
о непрерывном,
или
сплошном,
спектре,
во
втором — о
дискретном спектре.

Корпускулярно-волновая двойственность света[править | править код]

Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать только на основе квантовых представлений о свете, как о потоке дискретных фотонов. Однако волновой и квантовый (корпускулярный) способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами. Он представляет собой диалектическое единство этих противоположных свойств.
Волновые свойства света играют определяющую роль в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить квантовые свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела .

Фотоэффект: свет состоит из частиц

Фотоэффект, который также называется фотоэлектрическим эффектом, представляет собой процесс взаимодействия света (или любого другого электромагнитного излучения) с материей, в результате которого энергия частиц света передается частицам материи. Во время изучения фотоэффекта поведение фотоэлектронов не могло быть объяснено классической электромагнитной теорией.

Генрих Герц еще в 1887 году отметил, что направление ультрафиолетового света на электроды увеличило их способность создавать электрические искры. Эйнштейн в 1905 году объяснил фотоэффект тем, что свет поглощается и излучается определенными квантовыми порциями, которые он первоначально назвал квантами света, а затем окрестил их фотонами.

Эксперимент Роберта Милликена, проведенный в 1921 году, подтвердил суждения Эйнштейна и привел к тому, что последний получил Нобелевскую премию за открытие фотоэффекта, а сам Милликен получил Нобелевскую премию в 1923 году за работу над элементарными частицами и изучение фотоэффекта.