Модуль числа

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

\

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

\

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $\left| -3 \right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $\left| x \right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $f\left( x \right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

\

Ну и как такое решать? Напомню: $f\left( x \right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

\

или:

\

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет

Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$\left| 2x+1 \right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $\left| 2x+1 \right|=-\left( 2x+1 \right)=-2x-1$. В первом случае наше уравнение перепишется так:

\

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

\

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

\

Опа! Снова всё чётко: мы предположили, что $2x+1 \lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

\

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $\left| x \right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Свойства

Везде далее (a, m)=1{\displaystyle (a,\ m) = 1}

Теорема Теорема

Если b≡a mod m{\displaystyle b \equiv a\ mod\ m}, то ρa=ρb{\displaystyle \rho_a = \rho_b}

Доказательство

Для доказательства теоремы сперва вспомним, что если b≡a mod m{\displaystyle b \equiv a\ mod\ m}, то и bn ≡an mod m, ∀n≥{\displaystyle b^n\ \equiv a^n\ mod\ m,\ \forall n \geq 0}. Из aρa≡1 mod m{\displaystyle a^{\rho_a} \equiv 1\ mod\ m} следует, что bρa≡1 mod m{\displaystyle b^{\rho_a} \equiv 1\ mod\ m}, а из ar≢1 mod m, 1≤r<ρa{\displaystyle a^r \not \equiv 1\ mod\ m,\ 1 \leq r < \rho_a} следует ar≢1 mod m, 1≤r<ρa{\displaystyle a^r \not \equiv 1\ mod\ m,\ 1 \leq r < \rho_a}, т.е. ρa=ρb{\displaystyle \rho_a = \rho_b}.

Теорема Теорема

Если an≡1 mod m{\displaystyle a^n \equiv 1\ mod\ m}, то ρa|n{\displaystyle \rho_a\, |\, n}

Доказательство
Представим n{\displaystyle n} в виде n=ρaq+r{\displaystyle n = \rho_a \, q + r}, где 1≤r<ρa{\displaystyle 1\leq r < \rho_a}. Так как an≡1 mod m и aρa≡1 mod m{\displaystyle a^n \equiv 1\ mod\ m\ \text{и}\ a^{\rho_a} \equiv 1\ mod\ m}, то
1≡an=aqρa+r=(aρa)q⋅ar=ar mod m{\displaystyle 1 \equiv a^n = a^{q \rho_a + r} = (a^{\rho_a})^q \cdot a^r = a^r\ mod\ m}
.

Таким образом, r={\displaystyle r = 0 }, ч.т.д.

Теорема Теорема

ρa|φ(m){\displaystyle \rho_a\, |\, \varphi(m)}

Доказательство

Доказательство следует из предыдущей теоремы.

Теорема Теорема

as≡at mod m ⇔ s≡t mod ρa{\displaystyle a^s \equiv a^t\ mod\ m\ \Leftrightarrow\ s \equiv t\ mod\ \rho_a}

Доказательство

1) Пусть as≡at mod m, s≥t{\displaystyle a^s \equiv a^t\ mod\ m,\ s \geq t}. Тогда обе части этого сравнения можно (т.к. (a,m)=1{\displaystyle (a,\, m)=1}) сократить на at{\displaystyle a^t}, так что as−t≡1 mod m{\displaystyle a^{s-t} \equiv 1\ mod\ m}. Таким образом, ρa | s−t, s≡t mod ρa{\displaystyle \rho_a\ |\ s-t,\ s \equiv t\ mod\ \rho_a}.
2) Пусть s≡t mod ρa, s≥t≥{\displaystyle s \equiv t\ mod\ \rho_a,\ s \geq t \geq 0}. Тогда s=t+ρay{\displaystyle s = t + \rho_a y}, где y{\displaystyle y} целое неотрицательное.

as=at+ρay=at(aρa)y≡at mod m{\displaystyle a^s = a^{t + \rho_a y} = a^t (a^{\rho_a})^y \equiv a^t\ mod\ m}

Теорема Теорема

В последовательности a, a2, a3, …{\displaystyle a,\ a^2,\ a^3,\ \dots} все числа принадлежат ρa{\displaystyle \rho_a} классам, вычетами которых являются числа a, a2, a3, …, aρa{\displaystyle a,\ a^2,\ a^3,\ \dots,\ a^{\rho_a}}

Доказательство

По предыдущей теореме числа в последовательности a, a2, a3, …, aρa{\displaystyle a,\ a^2,\ a^3,\ \dots,\ a^{\rho_a}} попарно несравнимы. С другой стороны, в последовательности a, a2, a3, …{\displaystyle a,\ a^2,\ a^3,\ \dots} не больше чем ρa{\displaystyle \rho_a} несравнимых по модулю m{\displaystyle m} чисел. Следовательно, каждое из чисел вида aN (1≤N<∞){\displaystyle a^N\ (1 \leq N < \infty)} сравнимо с одним из чисел последовательности a, a2, a3, …, aρa{\displaystyle a,\ a^2,\ a^3,\ \dots,\ a^{\rho_a}}.

Теорема Теорема

ρas≡ρa⇔(s, ρa)=1{\displaystyle \rho_{a^s} \equiv \rho_a \Leftrightarrow (s,\ \rho_a) = 1}

Доказательство

1) Пусть (s, ρa)=1{\displaystyle (s,\ \rho_a) = 1}. Найдем наименьшее положительное y{\displaystyle y} такое, что (as)y≡1 mod m{\displaystyle (a^s)^y \equiv 1\ mod\ m}. Из этого следует, что asy≡1 mod m{\displaystyle a^{sy} \equiv 1\ mod\ m}, то есть ρa | sy{\displaystyle \rho_a\ |\ sy}, но (s, ρa)=1{\displaystyle (s,\ \rho_a)=1}, значит, ρa | y{\displaystyle \rho_a\ |\ y}, а так как y{\displaystyle y} было выбрано как наименьшее положительное, то оно в точности равно ρa{\displaystyle \rho_a}.
2) Пусть (s, ρa)=d>1{\displaystyle (s,\ \rho_a) = d > 1}. Тогда ρad{\displaystyle \frac{\rho_a}{d}} и sd{\displaystyle \frac{s}{d}} — целые числа и (as)ρad=(aρa)sd≡1 mod m{\displaystyle (a^s)^{\frac{\rho_a}{d}} = (a^{\rho_a})^{\frac{s}{d}}\equiv 1\ mod\ m}, т.е. ρas≤ρad<ρa{\displaystyle \rho_{a^s} \leq \frac{\rho_a}{d} < \rho_a }.

Теорема Теорема

Если по модулю m ρa=k{\displaystyle m\ \rho_a=k}, то классы

a¯, a¯2, …, a¯k{\displaystyle \bar{a},\ \bar{a}^2,\ \dots,\ \bar{a}^k}

представляют собой различные решения сравнения:

xk≡1 mod m{\displaystyle x^k \equiv 1\ mod\ m}

Доказательство

Доказательство следует из предыдущих теорем.

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Модуль числа

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Модуль числа

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

\

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $f\left( x \right)$ и $g\left( x \right)$ :

\

Применительно к нашему уравнению получим:

\

Ну, с требованием $2x\ge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

\

Ну и какой их этих двух корней удовлетворяет требованию $2x\ge 0$? Да оба! Поэтому в ответ пойдут два числа: $x={4}/{3}\;$ и $x=0$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

\

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

\

И решается оно точно так же:

\

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

\

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

\

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

\

\

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

\

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

\

\

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3}\;$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

\

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

\

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

\

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Основные теоретические сведения

Базовые сведения о модуле

Определение модуля может быть дано следующим образом: Абсолютной величиной числа a (модулем) называется расстояние от точки, изображающей данное число a на координатной прямой, до начала координат. Из определения следует, что:

Таким образом, для того чтобы раскрыть модуль необходимо определить знак подмодульного выражения. Если оно положительно, то можно просто убирать знак модуля. Если же подмодульное выражение отрицательно, то его нужно умножить на «минус», и знак модуля, опять-таки, больше не писать.

Основные свойства модуля:

Модуль числа

Некоторые методы решения уравнений с модулями

Существует несколько типов уравнений с модулем, для которых имеется предпочтительный способ решения. При этом данный способ не является единственным. Например, для уравнения вида:

Предпочтительным способом решения будет переход к совокупности:

А для уравнений вида:

Также можно переходить к почти аналогичной совокупности, но так как модуль принимает только положительные значения, то и правая часть уравнения должна быть положительной. Это условие нужно дописать в качестве общего ограничения для всего примера. Тогда получим систему:

Оба этих типа уравнений можно решать и другим способом: раскрывая соответствующим образом модуль на промежутках где подмодульное выражение имеет определённый знак. В этом случае будем получать совокупность двух систем. Приведем общий вид решений получающихся для обоих типов уравнений приведённых выше:

Для решения уравнений в которых содержится более чем один модуль применяется метод интервалов, который состоит в следующем:

  • Сначала находим точки на числовой оси, в которых обращается в ноль каждое из выражений, стоящих под модулем.
  • Далее делим всю числовую ось на интервалы между полученными точками и исследуем знак каждого из подмодульных выражений на каждом интервале. Заметьте, что для определения знака выражения надо подставить в него любое значение x из интервала, кроме граничных точек. Выбирайте те значения x, которые легко подставлять.
  • Далее на каждом полученном интервале раскрываем все модули в исходном уравнении в соответствии с их знаками на данном интервале и решаем полученное обычное уравнение. В итоговый ответ выписываем только те корни этого уравнения, которые попадают в исследуемый промежуток. Еще раз: такую процедуру проводим для каждого из полученных интервалов.

Свойства модуля числа

Давайте рассмотрим семь основных свойств модуля. Независимо от того, в какой класс перешел ребенок — эти правила пригодятся всегда.

1. Модуль числа — это расстояние, а расстояние не может быть отрицательным. Поэтому и модуль числа не бывает отрицательным:

|a|0 

2. Модуль положительного числа равен самому числу.

|a| = a, если a > 0

3. Модуль отрицательного числа равен противоположному числу.

|−a| = a, если a

4. Модуль нуля равен нулю.

|0| = 0, если a = 0

5. Противоположные числа имеют равные модули.

|−a| = |a| = a

6. Модуль произведения равен произведению модулей этих чисел.

|a b| = |a| |b|, когда

a·b 0

или

−(a·b), когда a·b<0

7. Модуль частного равен частному от деления модуля числа числителя на модуль числа знаменателя: 

Величины в математике

Для начала следует понимать, что абсолютная величина – это параметр в статистике (измеряется количественно), который характеризует изучаемое явление по его объему. При этом явление должно осуществляться в определенных временных рамках и с определенным месторасположением. Различают значения:

  • суммарные – подходят для группы единиц или полностью всей совокупности,
  • индивидуальные – подходят только для работы с единицей некой совокупности.

Понятия широко используются в статистических измерениях, результатом которых являются показатели, характеризующие абсолютные размеры у каждой единицы некоего явления. Измеряются они в двух показателях: натуральном, т.е. физические единицы (шт., люди) и условно-натуральном. Модуль в математике является отображением данных показателей.

Модуль числаМодуль числа

Немного теории

Итак, поехали

Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $\left| -5 \right|=5$

Или $\left| -129,5 \right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $\left| 5 \right|=5$; $\left| 129,5 \right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $\left| -5 \right|=\left| 5 \right|=5$; $\left| -129,5 \right|=\left| 129,5 \right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

\

Ещё один важный факт: модуль никогда не бывает отрицательным. Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

\

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=\left| x \right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

Модуль числаГрафик модуля и пример решения уравнения

Из этой картинки сразу видно, что $\left| -m \right|=\left| m \right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $\left| {{x}_{1}}-{{x}_{2}} \right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Свойства модуля

Модулю присущ ряд характерных результатов — свойства модуля. Сейчас мы приведем основные и наиболее часто используемые из них. При обосновании этих свойств мы будем опираться на определение модуля числа через расстояние.

  • Начнем с самого очевидного свойства модуля – модуль числа не может быть отрицательным числом. В буквенном виде это свойство имеет запись вида для любого числа a. Это свойство очень легко обосновать: модуль числа есть расстояние, а расстояние не может выражаться отрицательным числом.

  • Переходим к следующему свойству модуля. Модуль числа равен нулю тогда и только тогда, когда это число есть нуль. Модуль нуля есть нуль по определению. Нулю соответствует начало отсчета, никакая другая точка на координатной прямой нулю не соответствует, так как каждому действительному числу поставлена в соответствие единственная точка на координатной прямой. По этой же причине любому числу, отличному от нуля, соответствует точка, отличная от начала отсчета. А расстояние от начала отсчета до любой точки, отличной от точки O, не равно нулю, так как расстояние между двумя точками равно нулю тогда и только тогда, когда эти точки совпадают. Приведенные рассуждения доказывают, что нулю равен лишь модуль нуля.

  • Идем дальше. Противоположные числа имеют равные модули, то есть, для любого числа a. Действительно, две точки на координатной прямой, координатами которых являются противоположные числа, находятся на одинаковом расстоянии от начала отсчета, значит модули противоположных чисел равны.

  • Следующее свойство модуля таково: модуль произведения двух чисел равен произведению модулей этих чисел, то есть, . По определению модуль произведения чисел a и b равен либо a·b, если , либо −(a·b), если . Из правил умножения действительных чисел следует, что произведение модулей чисел a и b равно либо a·b, , либо −(a·b) , если , что доказывает рассматриваемое свойство.

  • Модуль частного от деления a на b равен частному от деления модуля числа a на модуль числа b, то есть, . Обоснуем это свойство модуля. Так как частное равно произведению , то . В силу предыдущего свойства имеем . Осталось лишь воспользоваться равенством , которое справедливо в силу определения модуля числа.

  • Следующее свойство модуля записывается в виде неравенства: , a, b и c – произвольные действительные числа. Записанное неравенство представляет собой ни что иное как неравенство треугольника. Чтобы это стало понятно, возьмем точки A(a), B(b), C(c) на координатной прямой, и рассмотрим вырожденный треугольник АВС, у которого вершины лежат на одной прямой. По определению модуля разности равен длине отрезка АВ, — длине отрезка АС, а — длине отрезка СВ. Так как длина любой стороны треугольника не превосходит сумму длин двух других сторон, то справедливо неравенство , следовательно, справедливо и неравенство .

  • Только что доказанное неравенство намного чаще встречается в виде . Записанное неравенство обычно рассматривают как отдельное свойство модуля с формулировкой: «Модуль суммы двух чисел не превосходит сумму модулей этих чисел». Но неравенство напрямую следует из неравенства , если в нем вместо b положить −b, и принять c=0.

Что такое модуль числа?

Модуль числаНо у данного понятия есть и геометрическое объяснение, поскольку модулю в геометрии равняется расстояние от начала системы координат до точки X, которое измеряется в привычных единицах измерения.

Для того, чтобы определить данный показатель у числа, следует не учитывать его знак (минус, плюс), но при этом следует помнить то, что он никогда не может быть отрицательным. Данное значение на бумаге выделяется графически в виде квадратных скобок |a|. При этом, математическое определение такое:

|х| = х, если х больше или равен нулю и -х, если меньше нуля.

Английский ученый Р. Котес был тем человеком, кто впервые применил данное понятие в математических расчетах. А вот К. Вейерштрасс, математик из Германии, придумал и ввел в использование графический символ.

В геометрии module можно рассмотреть на примере координатной прямой, на которое нанесены 2 произвольные точки. Предположим, одна А имеет значение 5, а вторая В — 6. При подробном изучении чертежа станет ясно, что расстояние от А до В – 5 единиц от нуля, т.е. начала координат, а точка В размещена от начала координат на 6 единиц. Можно сделать вывод, что module точки, А = 5, а точки В = 6. Графически это можно обозначить так: | 5 | = 5. Т. е. расстояние от точки до начала координат является модулем данной точки.

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к . Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке  величина будет отрицательной, а на интервале  будет положительной.

Разделим интервал на 2 части:

  1. для x + 2 ≥ 0

Общим ответом для этих двух неравенств является интервал [−1; + ∞).

  1. для х + 2 < 0

Общим ответом для этих двух неравенств является интервал (−∞; –3].

Окончательное решение – объединение ответов отдельных частей:

x ∈ (–∞; –3] ∪ [–1; + ∞).

Ответ: x ∈ (–∞; –3] ∪ [–1; + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Модуль числа

Ответ: x1 = 3; x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Модуль числа

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Модуль числа

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что  не лежит в промежутке

Ответ: x = 0.

Величины в математике

Для начала следует понимать, что абсолютная величина – это параметр в статистике (измеряется количественно), который характеризует изучаемое явление по его объему. При этом явление должно осуществляться в определенных временных рамках и с определенным месторасположением. Различают значения:

  • суммарные – подходят для группы единиц или полностью всей совокупности;
  • индивидуальные – подходят только для работы с единицей некой совокупности.

Понятия широко используются в статистических измерениях, результатом которых являются показатели, характеризующие абсолютные размеры у каждой единицы некоего явления. Измеряются они в двух показателях: натуральном, т.е. физические единицы (шт., люди) и условно-натуральном. Модуль в математике является отображением данных показателей.

Модуль числа
Модуль числа

Избавление от знака модуля

Пусть нам дано уравнение $\left| f\left( x \right) \right|=a$, причём $a\ge 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

\

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

\

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

\

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

\

Опять раскрываем модуль с плюсом и минусом:

\

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Свойства

Как у любого математического понятия, у module есть свои математические свойства:

  1. Он всегда положительный, поэтому модулем положительного значения будет оно само, например, модуль числа 6 и -6 равен 6. Математически это свойство можно записать как |a| = a, при a&gt, 0,
  2. Показатели противоположных чисел равны между собой. Это свойство понятнее в геометрическом изложении, поскольку на прямой данные числа располагаются в разных местах, но при этом от начала отсчета их отделяет равное количество единиц. Математически это записывается так: |а| = |-а|,
  3. Модуль нуля равен нулю, при условии, что действительное число – это ноль. Это свойство подтверждается тем фактом, что ноль является началом координат. Графически это записывают так: |0| = 0,
  4. Если требуется найти модуль двух умножающихся цифр, стоит понимать, что он будет равен полученному произведению. Другими словами, произведение величин А и В = АВ, при условии, что они положительные или же отрицательные, и тогда произведение равняется -АВ. Графически это можно записать как |А*В| = |А| * |В|.

Успешное решение уравнений с модулем зависит от знания данных свойств, которое поможет любому правильно вычислять и работать с данным показателем.

Модуль числаСвойства модуля

В уравнениях

В случае работы и решения математических неравенств, в которых присутствует module, всегда необходимо помнить, что для получения итогового правильного результата следует раскрыть скобки, т.е. открыть знак module. Зачастую, в этом и есть смысл уравнения.

При этом стоит помнить, что:

  • если в квадратных скобках записано выражение, его необходимо решить: |А + 5| = А + 5, при А больше или равным нулю и 5-А, в случае А меньше нуля,
  • квадратные скобки чаще всего должны раскрываться независимо от значений переменной, например, если в скобках заключено выражение в квадрате, поскольку при раскрытии в любом случае будет положительное число.

Очень легко решаются уравнения с module путем занесения значений в систему координат, поскольку тогда легко увидеть визуально значения и их показатели.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

  1. Модулем любой цифры является величина неотрицательная. Таким образом, абсолютным значением положительной величины будет выступать она сама. Графически эта закономерность выражается следующим образом: |a| = a, если a> 0.
  2. Модули противоположных величин равны друг другу Это объясняется тем фактом, что на координатной прямой противоположные числа хотя и располагаются в разных точках, но находятся на одинаковом расстоянии от начальной точки отсчёта. Графически это выражается как: |а| = |-а|.
  3. Третьим свойством является то, что абсолютным значением нуля равняется сам нуль. Это условие считается верным в том случае, когда действительное число является нулем. Поскольку нулю соответствует начало отсчета в системе координат, то модулем числа ноль является сам ноль по определению. Графически: |0| = 0|.
  4. Еще одним важным свойством является то, что абсолютное значение произведений двух любых действительных чисел равняется произведению двух этих величин. Это условие необходимо рассмотреть более подробно. Иначе говоря, абсолютным значением произведения величин, А и В будет АВ в случае если оба этих значения положительные или же оба отрицательные, или -АВ при условии, что одно из этих чисел будет отрицательным. В записи эта закономерность будет выглядеть следующим образом: |А*В| = |А| * |В|.
  5. Абсолютная величина суммы любых двух действительных чисел меньше или равна сумме их модулей.
  6. Абсолютная величина разности двух произвольных величин меньше или равна разности двух абсолютных величин.
  7. Если в математическом выражении имеется постоянный положительный множитель, его можно выносить за знак | |.
  8. Такое же правило распространяется и на показатель степени выражения.

Геометрическая интерпретация модуля

Как мы уже знаем, модуль числа — это расстояние от нуля до данного числа. То есть расстояние от точки −5 до нуля равно 5.

Нарисуем числовую прямую и отобразим это на ней.Модуль числа

Эта геометрическая интерпретация используется для решения уравнений и неравенств с модулем. Давайте рассмотрим на примерах.

Решим уравнение: |х| = 5

Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно 5. Это точки 5 и −5. Значит, уравнение имеет два решения: x = 5 и x = −5.

Когда у нас есть два числа a и b, то их разность |a — b| равна расстоянию между ними на числовой прямой. Или длине отрезка АВМодуль числа

Расстояние от точки a до точки b равно расстоянию от точки b до точки a, тогда |a — b| = |b — a|.

Решим уравнение: |a — 3| = 4 . Запись читаем так: расстояние от точки а до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.Модуль числа

Уравнение имеет два решения: −1 и 7. Мы из 3 вычли 4 — и это один ответ, а также к 3 мы прибавили 4 — и это второй ответ.

Решим неравенство: |a + 7| < 4 .

Эту запись читаем так: расстояние от точки a до точки −7 меньше четырёх. Отмечаем на числовой прямой точки, удовлетворяющие этому условию:Модуль числа

Ответ в данном случае будет таким: (-11; -3).

Решим неравенство: |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно семи. Отметим эти точки на числовой прямой.Модуль числа

Ответ: ( -; 3] [17, +)

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке  величина будет отрицательной, а на интервале  будет положительной.

Разделим интервал на 2 части:

  1. для x + 2 ≥ 0

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

  1. для х + 2 &lt, 0

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

x ∈ (–∞, –3] ∪ [–1, + ∞).

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Модуль числа

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Модуль числа

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Модуль числа

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что  не лежит в промежутке

Ответ: x = 0.