Происхождение и эволюция двойных звезд
Происхождение и эволюция двойных звезд происходит, в принципе, по тому же сценарию, что и у обычных звезд. Однако есть некоторые нюансы, которые отличают происхождение и эволюцию двойных систем от происхождения и эволюции одиночных светил.
Эволюция тесной двойной системы в представлении художника
Как и одинарные звезды, двойные системы образуются под влиянием гравитационных сил из газопылевого облака. В современной астрономии существует три наиболее популярных теории образования двойных звезд. Первая из них связывает образование двойных систем с разделением на раннем этапе общего ядра протооблака, которое послужило материалом для возникновения двойной системы. Вторая теория связана с фрагментацией протозвездного диска, в результате чего могут появиться не только двойные, но и многократные системы звезд. Происходит фрагментация протозвездного диска на более позднем этапе, чем фрагментация ядра. Последняя теория гласит, что образование двойных звезд возможно путем динамических физико-химических процессов внутри протооблака, которое служит материалом для образования звезд.
Происхождение и эволюция
Механизм формирования одиночной звезды изучен довольно хорошо — это сжатие молекулярного облака из-за гравитационной неустойчивости. Также удалось установить функцию распределения начальных масс. Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты:
- Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
- Распределение периода.
- Эксцентриситет у двойных звёзд может принимать любое значение 0<e<1, с медианным значением e=0.55. Можно утверждать, что нет какого-либо предпочтительного значения, и орбиты с высоким эксцентриситетом—обычное явление.
- Соотношение масс. Распределение соотношения масс q= M1/ M2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2<q<1. Таким образом, двойные звезды стремятся иметь компоненты одинаковой массы гораздо сильнее, чем предсказывает начальная функция масс.
На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется:
- Теории с промежуточным ядром
- Теории с промежуточным диском
- Динамические теории
Теории с промежуточным ядром
Самый многочисленный класс теорий. В них формирование идёт за счёт быстрого или раннего разделения протооблака.
Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчётная функция масс звёзд не совпадает с наблюдаемой.
Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.
Современные же теории рассматриваемого типа считают, что основная причина фрагментации — рост внутренней энергии и энергии вращения по мере сжатия облака.
Теории с промежуточным диском
В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.
В последнее время количество компьютерных расчётов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.
Динамические теории
Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдёт ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.
В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.
Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд.
Явления и феномены, связанные с двойными звёздами
Парадокс Алголя
Основная статья: Парадокс Алголя
Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П. Паренаго, обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более
Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.
Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается.
Обмен массами между звёздами
Основная статья: Полость Роша
Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша):
- Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
- Компоненты вращаются синхронно.
- Орбита круговая
Сечение поверхностей равного потенциала в модели Роша в орбитальной плоскости двойной системы
Тогда для компонентов M1 и M2 с суммой больших полуосей a=a1+a2 введём систему координат, синхронную с орбитальным вращением ТДС. Центр отсчёта находится в центре звезды M1, ось X направлена от M1 к M2, а ось Z — вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой:
Φ=−GM1r1−GM2r2−12ω2(x−μa)2+y2{\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left},
где r1= √x2+y2+z2 , r2= √(x-a)2+y2+z2 , μ= M2/(M1+M2), а ω — частота вращения по орбите компонентов. Используя третий закон Кеплера, потенциал Роша можно переписать следующим образом:
Φ=−12ω2a2ΩR{\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}},
где безразмерный потенциал:
ΩR=2(1+q)(r1a)+2(1+q)(r2a)+(x−μa)2+y2a2{\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}},
где q = M2/M1
Эквипотенциали находятся из уравнения Φ(x,y,z)=const. Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L1. Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения.
Новые
Основная статья: Новая звезда
Новыми называют звёзды, кратковременно (недели, месяцы) увеличивающие свою светимость в тысячи (до сотен тысяч) раз. По результатам исследований, все такие звёзды являются двойными, одна из компонент является белым карликом, а вторая — звездой обычной плотности, полностью заполняющей свою полость Роша.
Рентгеновские двойные
Основные статьи: Рентгеновская новая и Рентгеновский пульсар
Рентгеновскими двойными называют тесные пары, где одна из звёзд — компактный объект, нейтронная звезда или чёрная дыра, и жёсткое излучение возникает в результате падения вещества обычной звезды (достигшей границ полости Роша) на аккреционный диск, образующийся вокруг компактного компонента пары.
Симбиотические звёзды
Основная статья: Симбиотические звезды
Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окружённых общей туманностью. Для них характерны сложные спектры, где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п.). Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки, во время которых их блеск увеличивается на две-три звёздных величины.
Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1—100 лет.
Барстеры
Основная статья: Барстер
Разновидность рентгеновских двойных, дающих излучение короткими вспышками (секунды) с промежутками в десятки секунд.
Сверхновые типа Ia
Основная статья: Сверхновая типа Ia
Такие сверхновые образуются в двойной системе, когда при аккреции масса компактного компонента (белый карлик) достигает предела Чандрасекара, либо происходит углеродный взрыв.
Открытие двойных звезд
Открытие двойных звезд стало одним из первых достижений, сделанных с помощью астрономического бинокля. Первой системой данного типа была пара Мицар в созвездии Большой Медведицы, которая была открыта Ричолли, астрономом из Италии. Правда, в то время не было сведений о том, есть ли физическая связь между звёздами в такой системе.
Мицар и Алькор двойная звезда
Некоторые учёные придерживались точки зрения о том, что двойные звёзды зависят от общей звёздной ассоциации. Их аргументом был неоднородный блеск составляющих пары. Поэтому складывалось впечатление, что их разделяет значительное расстояние, на котором невозможно установить связь. Для подтверждения или опровержения этой гипотезы потребовалось измерение годичного звёздного параллакса.
В 1804 году Вильям Гершель, который вёл свои наблюдения в течение 24 лет, издал каталог с подробным описанием 700 двойных звёзд. Гершель учёл противоречие гипотезы, попытавшись его разрешить, и к своему удивлению выяснил, что траектория каждой звезды имеет сложную эллиптическую форму, а не вид симметричных колебаний с периодом в полгода, как предполагалось.
Согласно физическим законам небесной механики два связанных гравитацией тела передвигаются по орбите эллиптической формы, именно поэтому результаты исследования Гершеля стали доказательством предположения о том, что в двойных звёздных системах есть гравитационная связь.
Типы двойных звёзд
Когда просят указать типы или виды двойных звёзд, нужно помнить, что есть несколько признаков, по которым двойные звёзды распределяются по типам.
Один из них мы уже знаем — образуют ли звёзды единую систему.
По этому признаку можно указать два типа двойных звёзд: оптические и физические двойные звёзды. О них мы скажем ниже.
Следующий признак — по способу различимости отдельных звёзд в системе двойной звезды. Коротко перечислим эти виды двойных звёзд.
Визуально-двойные звёзды — составляющие звезды видны по-отдельности невооружённым глазом или в телескоп. Это самый простой способ определения. Понятно, что это самые близкие к нам звёзды.
Обычные визуально-двойные звёзды — это единственный тип двойных звёзд, который доступен большинству астрономов-любителей.
Их разновидность — спекл-интерферометрические двойные звезды, которые разделяются путём анализа спекл-интерферограмм при использовании адаптивной оптики.
Астрометрические двойные звёзды — вывод о двойственности звезды делается
на основе анализа неравномерности собственного движения звезды по небу.
Одиночная звезда имеет ровную траекторию. А видимая траектория двойной звезды нелинейна.
Например, если в паре есть коричневый карлик, который не виден в оптическом диапазоне, то мы видим неравномерное колебательное движение второй звезды, которая видна. Ведь, обе звезды в системе вращаются вокруг общего центра масс.
Спектрально-двойные звёзды — вывод о двойственности этих звёзд сделан на основе анализа спектрограмм.
Если выявляются циклические изменения, то перед нами спектрально-двойная звезда.
Правда, есть вероятность, что на цикличность спектра влияет экзопланета.
Поэтому, здесь приходит на помощь анализ изменений лучевых скоростей и вычисление функций массы.
Эти сложные вспомогательные методы выходят за рамки статьи.
Затменно-двойные звёзды — если при взаимном вращении одна звезда перекрываается другой, то общая яркость системы периодически меняется.
Первой открытой затменно-двойные звёздой был Алголь.
На рисунке и графике яркости хорошо видно как изменяется яркость системы по мере взаимного вращения отдельных составляющих этой вдвойной звезды.
Микролинзированные двойные — довольно своеобразный способ поиска и определения.
Основан на эффекте гравитационной линзы — если между наблюдателем и объектом находится массивное тело, то распространение лучей искажается.
Кривые изменения яркости одиночной звезды хорошо известны, а в случае двойной звезды наблюдаются сильные отклонения от этой формы.
Вот эти-то отклонения и исследуют.
Классификационные особенности
С физической точки зрения, рассматриваемые двойные звёзды могут быть разделены на 2 категории.
- Звёзды, между которыми массовые обменные реакции невозможны. Они являются разделёнными.
- Звёзды, между которыми наблюдался, наблюдается или будет наблюдаться массовый обмен. Они могут быть разделёнными наполовину или контактными.
Разделение по категориям осуществляется и в зависимости от способа наблюдения. Двойные звёзды могут быть выделены спектральные, астрономические, визуальные, затменные системы двойного типа.
Тесная двойная система, система KOI-256, состоящая из красного и белого карликов. Иллюстрация NASA.
Визуальные
Двойные звёзды, которые наблюдаются раздельно, называются видимыми объектами. Возможность их видимости определяется разрешающей опцией телескопа, а также дистанцией до космических объектов. Они обладают большим по продолжительности периодом обращения, поэтому отслеживание орбиты допустимо исключительно спустя несколько десятков лет. В настоящее время из сотен тысяч объектов выделить орбиту можно только в сотнях единиц.
Спекл-интерферометрические
Как и адаптивная оптика, данное направление способствует достижению максимального значения дифракционного предела разрешения. А это способствует обнаружить двойные звёзды без проблем. Представители данной группы также являются двойными. Но если в случае с первой группой требуется получение двух отдельных изображений (для наблюдения), то в ситуации со второй категорией приходится обеспечивать анализ спекл-интерферограмм.
Астрономические
Говоря о первой группе, по небу можно заметить перемещение двух объектов одновременно. Но если представить, что один из двух элементов является незаметным, двойственность может быть обнаружена в любом случае (при изменении положения второго объекта на небе). В этой ситуации речь ведётся об астрономических-двойных звёздах. Если имеют место высокоточные наблюдения, двойственность может быть определена посредством фиксации движения. Представители этой группы на практике используются для определения массовых значений коричневых карликов.
B Cyq — бета Лебедя. Альбирео. Звездная пара в созвездии Лебедя. Голубоватый спутник, который в 200 раз ярче Солнце, вращается вокруг желтой звезды, превосходящая Солнце по яркости в 1000 раз
Спектральные
Такими звёздами называют светила, двойственность которых может быть обнаружена посредством использования спектральных аналитических исследований. Для этого наблюдения организуются на протяжении нескольких ночей. Если происходит смещение линий спектра с течением времени, это говорит об изменении скорости источника. Причин тому может быть несколько:
- переменный характер светила;
- присутствие у него плотной оболочки, которая появилась вследствие вспышки сверхновой звезды.
Имея спектроскопические сведения, не составит труда определить массы компонентов. Наряду с этим, можно запросто определить дистанции между ними, выявить период обращения, орбитальный эксцентриситет. Что касается угла, который имеет наклон орбиты, определить его на основании этих сведений невозможно.
Затменно-двойные
Нередко случается такое, что орбитальная плоскость имеет наклон к лучу зрения, и он является небольшим. В итоге можно наблюдать, что орбиты располагаются будто бы ребром. В рамках подобной системы двойные звёзды будут, затмевать друг друга. Это приведёт к изменению блеска пары.
Мицар и Алькор. Мицар справа — двойная звезда. Слева — спутник Алькор. Между ними всего один световой год
Микролинзированные
Если луч зрения, образованный между светилом и человеком, который за ним наблюдает, содержит тело, обладающее мощным полем гравитации, объект входит в данную категорию. Если бы поле было чрезмерно сильным, наблюдалось бы одновременно несколько звёздных изображений. Однако в случае с галактическими объектами поле является не настолько сильным, чтобы наблюдателю было доступно делать различия между несколькими изображениями.
Если в качестве гравирующего тела выступает двойные звёзды, кривая блеска, образуемая в процессе прохождения вдоль луча зрения, заметно отличается от одиночного светила. За счёт микролинзирования осуществляется поиск двойных звёзд, в рамках которых оба компонента являются недостаточно массивными и именуются коричневыми карликами.
Примечания
-
↑
А.А. Киселев. . Астронет (12 декабря 2005). Дата обращения 27 апреля 2013. - ↑ А. В. Засов, К. А. Постнов. Общая астрофизика. — Фрязино: ВЕК 2, 2006. — С. 208—223. — 398 с. — 1500 экз. — ISBN 5-85099-169-7.
- Pope, Benjamin; Martinache, Frantz; Tuthill, Peter. Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry. — 2013. — .
- (недоступная ссылка)
- Choi, J.-Y.; Han, C.; Udalski, A.; Sumi, T etc. Microlensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs. — 2013. — .
- В.М. Липунов. .
-
↑
Kaitlin M. Kratter. The Formation of Binaries (англ.). — 2011. — . — arXiv:1109.3740. - ↑
- ↑ А. В. Гончарский, А.М. Черепащук, А.Г. Ягола. Некорректные задачи астрофизики. — Москва: Наука, 1985. — С. 68—101. — 351 с. — 2500 экз.
Явления и феномены, связанные с двойными звездами
Интересным феноменом, который тесно связан с двойными звездами, является парадокс Алголя. Алголь – это двойная звезда, которая находится в созвездии Персея. Согласно общей теории эволюции небесных светил, чем больше масса звезды, тем быстрее она проходит все стадии эволюции. Но Парадокс Алголя заключается в том, что Алголь В – компонент двойной звезды, который обладает меньшей массой, эволюционно старше более массивного компонента этой системы – Алголь А. Ученые считают, что данный парадокс напрямую связан с эффектом перетекания масс в тесных двойных системах, за счет которого меньшая по размерам звезда могла эволюционировать быстрее более массивного компонента системы.
Сечение поверхностей равного потенциала в модели Роша в орбитальной плоскости двойной системы
С Парадоксом Алголя тесно связано еще одно интересное астрономическое явление, свойственное двойным звездам – это обмен массами между ними. Компоненты двойных звезд способны обмениваться своими массами и частицами друг с другом. У каждого из компонентов есть полость Роша – область, в которой гравитационные силы одного компаньона преобладают над гравитационными силами другого. Точка соприкосновения полостей Роша обеих звезд именуется точкой Лагранжа. Через эту точку возможно перетекание вещества одного компаньона к другому.
Интересным явлением, связанным с двойными звездами, можно также считать симбиотические системы двойных звезд. Данные системы состоят, как правило, из красного гиганта и белого карлика, которые вращаются вокруг общего центра масс. Продолжительность жизни таких систем сравнительно невелика. Однако для них характерны новоподобные вспышки, которые способны увеличить яркость звезды в 2-3 раза. Кроме того, симбиотическим двойным звездам свойственны и другие интересные астрофизические характеристики, которые привлекают умы астрономов всего земного шара.
Происхождение и эволюция
Механизм формирования одиночной звезды изучен довольно хорошо — это сжатие молекулярного облака из-за гравитационной неустойчивости. Также удалось установить функцию распределения начальных масс. Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты:
- Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
- Распределение периода.
- Эксцентриситет у двойных звёзд может принимать любое значение 0<e<1, с медианным значением e=0.55. Можно утверждать, что нет какого-либо предпочтительного значения, и орбиты с высоким эксцентриситетом—обычное явление.
- Соотношение масс. Распределение соотношения масс q= M1/ M2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2<q<1. Таким образом, двойные звезды стремятся иметь компоненты одинаковый массы гораздо сильнее, чем предсказывает начальная функция масс.
На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется:
- Теории с промежуточным ядром
- Теории с промежуточным диском
- Динамические теории
Теории с промежуточным ядром
Самый многочисленный класс теорий. В них формирование идет за счёт быстрого или раннего разделение протооблака.
Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчетная функция масс звёзд не совпадает с наблюдаемой.
Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.
Современные же теории рассматриваемого типа считают, что основная причина фрагментации — рост внутренней энергии и энергии вращения по мере сжатия облака.
Теории с промежуточным диском
В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.
В последнее время количество компьютерных расчетов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.
Динамические теории
Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдет ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.
В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.
Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд.
Заключение
В окрестностях Солнца (d
а) Массы звезд не могут быть ни слишком большими (например,
больше массы Солнца в 100 раз), ни слишком малыми (например, меньше
1/100 солнечной).
б) Статистическая зависимость масса-светимость, по-видимому, имеет общую значимость и может различаться
только незначительно для звезд, принадлежащих разным типам
звездного населения.
в) Из а) и б), в частности, следует, что если обычные звезды
сравнительно мало различаются по массе, то по светимости они могут
различаться в тысячу раз.
г) Масса звезды в момент ее формирования является важнейшим
параметром, определяющим ее последующую эволюцию.