Что такое анод и катод, в чем их практическое применение

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Что такое анод и катод, в чем их практическое применение
Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис

2. Гальванический элемент

Что такое анод и катод, в чем их практическое применение
Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Что такое анод и катод, в чем их практическое применение
Рис. 3. Диод

Что такое анод и катод, в чем их практическое применение
Рис. 4. Электроды светодиода Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Что такое анод и катод, в чем их практическое применение
Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Сообщение об ошибке

Перенесено со страницы .

Именно так («электрод некоторого прибора, присоединённый к полюсу источника питания«)? То же и про Катод. А как же тогда все аноды и катоды источников тока, в частности гальванических элементов и аккумуляторов? Одних только статей про их разновидности несколько десятков наберется только в википедии… Или даже аноды-катоды люминисцентных ламп, к примеру, которые питаются от сети переменного тока?

Автор сообщения: 37.113.156.53 16:47, 2 ноября 2017 (UTC)

  • Вопросы, конечно, интересные. Но они не для страницы «Сообщения об ошибках», а скорее для письма в редакцию журнала «Хочу всё знать». Или хотя бы для страницы Обсуждение:Анод. —37.190.0.166

    Катод упустили. Раз такое противоречие — может по данному вопросу сей журнал не АИ или надо брать несколько источников? 37.113.180.123 19:40, 2 ноября 2017 (UTC)

    19:13, 2 ноября 2017 (UTC)

  • Если считать гальванический элемент прибором (а что мешает?), то  Не ошибка. Пояснения в тексте есть. А вот высокоумная фраза «Аноды — множественное число слова «анод»; эта форма применяется преимущественно в металлургии» реально доставляет. —KVK2005 (обс.

    Всё бы ничего, если бы не «присоединённый к полюсу источника питания», т.е. когда гальванический элемент не присоединён к источнику питания (? зачем и к какому источнику питания) у него нет ни катода, ни анода? Явно ошибка. Во вторых формулировка: там пишется «присоединённый к положительному (для анода)/отрицательному (для катода) полюсу источника питания, для чего я и привёл в качестве примера Люминесцентная лампа — они работают от переменного тока, но катод-анод у них не меняется с частотой 50 Гц (в принципе в статье описаны в разделе ЭВП, но как-то надо определение подкорректировать — а то получается, что это не статья, а дизамбиг, но при этом оформлена как статья). 37.113.180.123 19:49, 2 ноября 2017 (UTC)

    ) 19:31, 2 ноября 2017 (UTC)

К обсуждению —Well-Informed Optimist (?•!) 11:13, 2 декабря 2017 (UTC)

Что такое «плюс» и «минус» в электричестве

Электроэнергия приходит в дом по проводам, протянутым от подстанции, которая получает энергию от источника, вырабатывающей ее (гидро-, тепло-, атомной электростанции). В зависимости от необходимого потребления мощности, различают вольтаж. Для крупных промышленных предприятий используют ток в 1000В, любая многоэтажка потребляет много энергии, для работы лифта необходимо 380В, а в квартирах – 220В.

Схема подводки электричества к дому

Иногда, в частных домах может быть использовано напряжение в 380В, если потребление довольно высокое и требует большой мощности. Для таких домов используют кабель в 5 жил (5 проводников). Эту сеть называют трехфазной, где 3 жилы-фазы разветвляются на потребителей, 1 жила – нулевая и 1 жила — заземляющая.

Трехфазный кабель

Важно! Электрический ток всегда движется в одном направлении и для правильной работы ему нужен замкнутый круг. В стандартных квартирах рабочим напряжением является 220В, называется такая сеть однофазной, и в ней используется 2 или 3 проводника

Если в квартиру заведен 3‐х жильный кабель, то, для подключения розеток, рекомендуется использовать все 3 жилы, где 3-я используется для безопасности – заземление. В любом случае, в таком проводе только 1 сердечник под напряжением (фаза – это «плюс» или «минус»)

В стандартных квартирах рабочим напряжением является 220В, называется такая сеть однофазной, и в ней используется 2 или 3 проводника. Если в квартиру заведен 3‐х жильный кабель, то, для подключения розеток, рекомендуется использовать все 3 жилы, где 3-я используется для безопасности – заземление. В любом случае, в таком проводе только 1 сердечник под напряжением (фаза – это «плюс» или «минус»).

Итак, обычный электрический кабель для однофазной сети имеет 2 или 3 жилы:

  • Фаза («плюс») — провод, по которому напряжение приходит к электроприбору. Это энергия, на которой работают все электроприборы, освещение.
  • Ноль («минус») — провод, по которому ток возвращается. Также, ноль выравнивает фазное напряжение.
  • Заземление – нужно для защиты человека от удара электротоком, при повреждении изоляции или неисправности электроприбора.

Однофазный провод

Соединять «плюс» с «минусом» нельзя, произойдет короткое замыкание, что приведет к отсечению электричества автоматическим выключателем или выбиванию пробок.

Важно! Автоматический выключатель не сработает при неисправном электроприборе и потребителя ударит током. Чтобы этого не произошло, используют заземление

Если заземление в доме не предусмотрено, устанавливают УЗО для зашиты человека от поражения электрическим током.

Знак анода:

В литературе встречается различное обозначение знака анода: «+» или «−», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод – тот, где протекает окисление. При работе электролизера (например, при рафинировании меди, никеля, цинка) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод (т.е. имеет знак «−»). На другом электроде обеспечивается недостаток электронов (положительный заряд) и окисление металла, это анод (т.е. имеет знак «+»).

Наоборот,  при работе гальванического элемента (к примеру, медно-цинкового), избыток электронов (и отрицательный заряд) на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла (растворения цинка), то есть здесь отрицательным, если следовать приведённому определению, будет уже анод (знак «−»). Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления (меди), то есть катодом будет являться положительный электрод (знак «+»).

В соответствии с таким толкованием, для аккумулятора анод и катод меняются местами в зависимости от направления тока внутри аккумулятора.

Гальванический элемент – это химический источник тока, состоящий из электродов и электролита, заключенных в один сосуд, предназначенный для разового или многократного разряда. Гальваническая батарея, в свою очередь, – это химический источник тока, состоящий из двух или более гальванических элементов, соединенных между собой электрически для совместного производства электрической энергии.

Аккумулятор – это гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда электрическим током. Аккумуляторная батарея, в свою очередь, это электрически соединенные между собой аккумуляторы, оснащенные выводами и заключенные, как правило, в одном корпусе

В соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» отрицательный электрод химического источника тока – это электрод, который при разряде химического источника тока является анодом (знак «−»); положительный электрод химического источника тока – это, который при разряде химического источника тока является катодом (знак «+»). Химический источник тока – это устройство, в котором химическая энергия заложенных в нем активных веществ непосредственно преобразуется в электрическую энергию при протекании электрохимических реакций.

В электротехнике катод – это отрицательный электрод (знак «−»), а анод – положительный электрод (знак «+»). В электротехнике за направление электрического тока принято считать направление движения положительных зарядов. Электрический ток течёт от анода к катоду, электроны, соответственно, наоборот, от «−» к «+».

Примечание:  Фото //www.pexels.com, //pixabay.com

Коэффициент востребованности 1

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Основные свойства катодов

Любой электровакуумный прибор имеет электрод, предназначенный для испускания (эмиссии) электронов. Этот электрод называется катодом. Электрод, предназначенный для приема эмиттированных катодом электронов, называется анодом. На анод подают более высокий и положительный относительно катода потенциал. Катод должен отдавать с единицы поверхности большой ток эмиссии при возможно низкой температуре нагрева и обладать большим сроком службы. Нагрев катода в электровакуумном приборе производится протекающим по нему током.

Будет интересно Что такое шаговое напряжение и чем оно опасно

Такие термоэлектронные катоды разделяются на две основные группы:

  • катоды прямого накала,
  • катоды косвенного накала (подогревные).

Катоды прямого накала представляют собой металлическую нить, которая непосредственно разогревается током накала и служит для излучения электронов.Поверхность излучения катодов прямого накала невелика, поэтому от них нельзя получить большой ток эмиссии. Малая теплоемкость нити не позволяет использовать для нагрева переменный ток. Кроме того, при нагреве переменным током температура катода не постоянна во времени, а следовательно, меняется во времени и ток эмиссии.

Положительным свойством катода прямого накала является его экономичность, которая достигается благодаря малому количеству тепла, излучаемого в окружающую среду вследствие малой поверхности катода. Катоды прямого накала изготовляются из вольфрамовой и никелевой проволоки. Однако большая работа выхода (W = 4,2÷4,5 в) определяет высокую рабочую температуру катода, вследствие чего катод становится неэкономичным. Для повышения экономичности катода вольфрамовую или никелевую проволоку (керн) «активируют» — покрывают пленкой другого элемента. Такие катоды называются активированными.

Если на поверхность керна нанесена электроположительная пленка (пленка из цезия, тория или бария, имеющих меньшую работу выхода, чем материал керна), то происходит поляризация пленки: валентные электроны переходят в керн, и между положительно заряженной пленкой и керном возникает разность потенциалов, ускоряющая движение электрона при выходе его из керна.

Работа выхода катода с такой мономолекулярной электроположительной пленкой оказывается меньше работы выхода электрона как из основного металла, так и из металла пленки. При покрытии керна электроотрицательной пленкой, например кислородом, работа выхода катода увеличивается. Подогревные катоды выполняются в виде никелевых гильз, поверхность которых покрывается активным слоем металла, имеющим малую работу выхода. Внутри катода помещается подогреватель— вольфрамовая нить или спираль, подогрев которой может осуществляться как постоянным, так и переменным

Как работает гальванизация.

током.

Для изоляции подогревателя от гильзы внутренность последней покрывается алундом (Аl2O3). Подогревные катоды, благодаря их большой тепловой инерции, обычно питают переменным током, значительная поверхность гильзы обеспечивает большой эмиссионный ток. Подогревные катоды, однако, менее экономичны и разогреваются значительно дольше, чем катоды прямого накала.

по поводу самого определения

Автор, пожалуйста обратите внимание, возможно я чего-то упустил, но если нет- это повод для скорейшей правки:

автор статьи всю дорогу объясняет что термин А. необходимо определять со стороны электрохимии и направление движения заряда в текущем режиме (как в источнике оно меняется в зависимости от заряда/разряда так и в электролизе), и в частности приводит ГОСТ
«ГОСТ 15596-82. ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом».

и тут же в статье видим

Ано́д — (др.-греч. ἄνοδος — движение вверх) положительный полюс источника тока ( гальванического элемента, электрической батареи и т. д.) или электрод некоторого прибора, присоединённый к положительному полюсу источника питания.

что конечно правильно, но лишь для двух частных случаев и как-то вообще оставляет без внимания электрохимию и направление движения заряда.

Понимаю что эта область вообще полна условностей в направлениях и определениях, тем тщательне́е к ним надо, я считаю

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот. Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом

Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Знак катода:

В литературе встречается различное обозначение знака катода: «+» или «−», что определяется, в частности, особенностями рассматриваемых процессов.

В электрохимии принято считать, что катод — электрод, на котором происходит процесс восстановления, а анод – тот, где протекает окисление. При работе электролизера (например, при рафинировании меди, никеля, цинка) внешний источник тока обеспечивает на одном из электродов избыток электронов (отрицательный заряд), здесь происходит восстановление металла, это катод (т.е. имеет знак «−»). На другом электроде обеспечивается недостаток электронов (положительный заряд) и окисление металла, это анод (т.е. имеет знак «+»).

Наоборот,  при работе гальванического элемента (к примеру, медно-цинкового), избыток электронов (и отрицательный заряд) на одном из электродов обеспечивается не внешним источником тока, а собственно реакцией окисления металла (растворения цинка), то есть здесь отрицательным, если следовать приведённому определению, будет уже анод (знак «−»). Электроны, проходя через внешнюю цепь, расходуются на протекание реакции восстановления (меди), то есть катодом будет являться положительный электрод (знак «+»).

В соответствии с таким толкованием, для аккумулятора анод и катод меняются местами в зависимости от направления тока внутри аккумулятора.

Гальванический элемент – это химический источник тока, состоящий из электродов и электролита, заключенных в один сосуд, предназначенный для разового или многократного разряда. Гальваническая батарея, в свою очередь, – это химический источник тока, состоящий из двух или более гальванических элементов, соединенных между собой электрически для совместного производства электрической энергии.

Аккумулятор – это гальванический элемент, предназначенный для многократного разряда за счет восстановления емкости путем заряда электрическим током. Аккумуляторная батарея, в свою очередь, это электрически соединенные между собой аккумуляторы, оснащенные выводами и заключенные, как правило, в одном корпусе.

В соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» отрицательный электрод химического источника тока – это электрод, который при разряде химического источника тока является анодом (знак «−»); положительный электрод химического источника тока – это, который при разряде химического источника тока является катодом (знак «+»). Химический источник тока – это устройство, в котором химическая энергия заложенных в нем активных веществ непосредственно преобразуется в электрическую энергию при протекании электрохимических реакций.

В электротехнике катод – это отрицательный электрод (знак «−»), а анод – положительный электрод (знак «+»). В электротехнике за направление электрического тока принято считать направление движения положительных зарядов. Электрический ток течёт от анода к катоду, электроны, соответственно, наоборот, от «−» к «+».

Примечание:  Фото //www.pexels.com, //pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

Коэффициент востребованности
85

Анод на аккумуляторе, гальваническом элементе, в диоде и в других приборах. Анод при электролизе водного и иного раствора. Процессы на аноде:

Анод (др.-греч. ἄνοδος – «движение вверх») – это электрод некоторого прибора, в который втекает электрический ток (в его конвенциональном понимании как поток положительных зарядов), в противоположность катоду из которого он вытекает.

Анод в электрохимии (при электролизе) – это электрод, на котором происходят реакции окисления. Например, при электролитическом рафинировании металлов (меди, никеля, цинка и пр.) либо при нанесении на поверхность изделия слоя металла электрохимическим способом на аноде происходит разрушение (растворение) анода, в результате которого металл с примесями растворяется и осаждается в очищенном виде на катоде или на поверхности изделия, выступающего в качестве катода.

Основное распространение получили аноды из цинка, никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия, бронзы, олова, сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах – это электрод, который притягивает к себе летящие электроны, испущенные катодом вследствие термоэлектронной эмиссии. В электронных лампах и рентгеновских трубках конструкция анода такова, что он полностью поглощает электроны. А в электронно-лучевых приборах анод является элементом электронной пушки. Он поглощает лишь часть летящих электронов, формируя после себя электронный луч.

Термоэлектронная эмиссия – это явление выхода электронов из твёрдого тела, металла или карбидов или боридов переходных металлов в свободное пространство, обычно в вакуум или разрежённый газ при нагреве его до высокой температуры. Заметная эмиссия электронов наблюдается при нагреве чистых металлов только до температур свыше 900 К.

Анод в полупроводниковом приборе (диоде, тиристоре) – это электрод, подключенный к положительному полюсу источника тока, когда при приложении прямого напряжения прибор открыт (то есть имеет маленькое сопротивление и через прибор течёт прямой ток).

Анод химического источника тока (в аккумуляторе и ином гальваническом элементе) в соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» – это электрод химического источника тока, на котором протекают окислительные процессы.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Применение в электронике

В электронике применяют особенности диодов впускать заряд по прямому маршруту, но не отпускать обратно.

Что такое анод и катод, в чем их практическое применениеР-n переход тока

Работа светодиода заключается в свойстве кристаллов, которые светятся при пропускании через p-n переход тока по прямой.

В электрохимии электрические проводники необходимы при создании автономных источников питания (аккумуляторные батареи), а также при воспроизведении технологических процессов. Аноды, катоды участвуют в электролизе, электроэкстракции, гальваностегии и гальванопластике.

Гальваника — восстановления металла при химических процессах под воздействием электротока. Такая процедура приводит к устойчивости от коррозии узлов и агрегатов механизмов.

Положительно заряженный электрод

Положительно заряженный электрод ( анод) обозн.

Положительно заряженный электрод, на котором происходит восстановление анионов, называют анодом.

Положительно заряженный электрод ( анод) имеет форму пластины или стержня.

На положительно заряженном электроде ( аноде) проходят реакции окисления, характер которых зависит от того, способен ли растворяться металлический анод в конкретных условиях электролиза или он находится в инертном ( пассивном) состоянии.

Анод — положительно заряженный электрод электровакуумного прибора, к которому под действием ускоряющего электрического поля движутся электроны, испускаемые катодом. Кинетическая энергия электронов, входящих в анод, переходит в тепловую, которая может вызвать значительное повышение температуры анода и даже расплавить его. Поэтому важным параметром электровакуумного прибора является максимально допустимая мощность, рассеиваемая анодом в виде тепла. Для обеспечения хорошего отвода тепла от анодов их поверхности делают темными — покрывают слоем угля, циркония или титана, которые имеют наибольший коэффициент излучения. Аноды изготовляют из молибдена, тантала, никеля или графита в виде цилиндров, плоскостей или колпачков.

Со стороны положительно заряженных электродов на частицу действует отталкивающая оила, а оо стороны отрицательно заряженных-притягивающая. По действием этих сил частицы претерпевают незначительные отклонения и выходят за пределы системы электродов.

Возникновение короны у положительно заряженного стержня.

При развитии короны вблизи положительно заряженного электрода происходит постоянное расширение области, охваченной короной. Под действием сил электрического поля легкие электроны лавины передвигаются к стержню и поглощаются им, тяжелые положительные ионы направляются к катоду.

Электрон может двигаться к положительно заряженному электроду за счет туннельного просачивания через потенциальные барьеры под влиянием приложенного напряжения. Передвижение электрона с п / 2 уровня молекулы, соседней с возбужденной, заполняет положительную дырку в последней и создает в свою очередь положительную дырку в ней самой. Перемещения такого рода приводят к миграции положительной дырки к отрицательному электроду и создает дырочный ток.

Полируемая деталь всегда подвешивается на положительно заряженный электрод — анод. Основной недостаток электрохимического полирования — сглаживание острых углов при полировании деталей сложной формы. Плотность тока на остриях детали наибольшая, поэтому острые углы растворяются быстрее, чем остальная часть детали.

Электролиз хлорной меди.

Отрицательные ионы хлора притягиваются к положительно заряженному электроду — аноду.

Отрицательно заряженные ионы хлора притягиваются к положительно заряженному электроду — аноду. На поверхности анода каждый ион хлора С1 — разряжается, отдавая электрон аноду.

Явление термоэлектронной эмиссии.

Вылетевшие из нити лампы электроны притягиваются положительно заряженным электродом А, вследствие чего во внешней цепи устанавливается ток. Если же электрод А соединен с отрицательным полюсом батареи, то он отталкивает электроны, вылетающие из накаленной нити; в этом случае тока во внешней цепи не будет.

Реакции окисления и восстановления

Реакция окисления является электрохимической реакцией, которая производит электроны. Электрохимическая реакция, которая происходит на отрицательном элементе цинкового электрода никель-цинковой батареи во время разряда:

Zn + 4OH- → Zn (OH) 2-4 + 2e-

реакция окисления. Окисление — это потеря электронов.

Реакция восстановления — это электрохимическая реакция, которая потребляет электроны. Электрохимическая реакция, происходящая на положительной стороне литий-ионного аккумулятора во время разряда:

Li1 — xCoO2 + XLI++ Xe- → LiCoO2

является реакцией восстановления. Сокращение — это выигрыш электронов.