Варистор

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Краткая теория о варисторах

Варистор – это разновидность нелинейного полупроводникового резистора, сопротивление которого зависит от приложенного напряжения. Его вольтамперная характеристика носит сильно нелинейный характер. Сопротивление варистора сильно уменьшается при достижении порогового напряжения. Благодаря этому варисторы широко используются для защиты от импульсных перенапряжений. Обычно варистор включается параллельно защищаемой нагрузке, при этом он должен быть рассчитан на номинальное напряжение питания данной нагрузки.

Если пороговое напряжение на варисторе не превышено он фактически является изолятором. Если порогового значения напряжения превышено, то сопротивление варистора резко падает. При этом варистор шунтирует нагрузку защищая ее от воздействия недопустимо высокого напряжения питания.

Как правило, в качестве порогового напряжения варистора указывается напряжение, при котором через него протекает ток в 1 мА. Когда пороговое напряжение превышено через варистор может протекать очень большой ток. Если перенапряжение в защищаемой цепи будет носить длительный характер, то варистор выйдет из строя. При длительном падении сопротивления варистора в цепи возникает короткое замыкание, что должно вызвать срабатывание предохранителя.

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Оптимальный рабочий режим

В силу высокой линейности устройства найти наилучшие параметры для схемы – задача не из легких. Для этого применяются довольно сложные и многочисленные расчеты

Большую важность в этом случае играет рабочий ток, значение которого должно быть минимальным и не вести к перегреву устройства. Но здесь приходится балансировать

Ведь если использовать слишком малой рабочий ток, то увеличится ограничение напряжения, и устройство не будет выполнять свою основную функцию. В качестве «ленивого» варианта можно взять на вооружение такой принцип: рабочее постоянное напряжение не должно превышать 0,85 от порога варистора. Но этот простой подход на практике является малоприменимым. Ведь работа варистора специфическая, и желаемый результат, а также рамки ограничения должны подбираться под каждый конкретный случай.

Маркировка

Варистор

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Проверка мультиметром

Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры

Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность

Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Аналогично выполняется проверка стабилитрона мультиметром в режиме проверки диодов. В этом случае в прямом направлении на экране высветится падение напряжения в районе 400-600 мВ. В обратном либо I, левой части экрана либо .0L, либо какой-то другой знак который говорит о «бесконечности» в измерениях.

На рисунке снизу представлена методика проверки мультиметром.

Если диод пробит, то он будет звониться в обе стороны. При этом цешка может показывать незначительное отклонение сопротивления от 0. Если р-n переход находится в обрыве, то независимо от направления включения показания прибора будут отсутствовать.

Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.

Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.

Способы проверки

Любой ремонт электроники и электрооборудования начинается с внешнего осмотра, а потом переходят к измерениям. Такой подход позволяет локализовать большую часть неисправностей. Чтобы найти варистор на плате посмотрите на рисунок ниже — так выглядят варисторы. Иногда их можно перепутать с конденсаторами, но можно отличить по маркировке.

Если элемент сгорел и маркировку прочесть невозможно — посмотрите эту информацию на схеме устройства. На плате и в схеме он может обозначаться буквами RU. Условное графическое обозначение выглядит так.

Есть три способа проверить варистор быстро и просто:

  1. Визуальный осмотр.
  2. Прозвонить. Это можно сделать муьтиметром или любым другим прибором, где есть функция прозвонки цепи.
  3. Измерением сопротивления. Это можно сделать омметром с большим пределом измерений, мультиметром или мегомметром.

Варистор выходит из строя, когда через него проходит большой или длительный ток. Тогда энергия рассеивается в виде тепла, и если её количество больше определённого конструкцией — элемент сгорает. Корпус этих компонентов выполняется из твердого диэлектрического материала, типа керамики или эпоксидного покрытия. Поэтому при выходе из строя чаще всего повреждается целостность наружного покрытия.

Можно визуально проверить варистор на работоспособность — на нем не должно быть трещин, как на фото:

Следующий способ — проверка варистора тестером в режиме прозвонки. Сделать это в схеме нельзя, потому что прозвонка может сработать через параллельно подключенные элементы. Поэтому нужно выпаять хотя бы одну его ножку из платы.

Важно: не стоит проверять элементы на исправность не выпаивая из платы – это может дать ложные показания измерительных приборов. Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться

Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра

Так как в нормальном состоянии (без приложенного к выводам напряжения) сопротивление варистора большое — он не должен прозваниваться. Прозвонку выполняют в обоих направлениях, то есть два раза меняя местами щупы мультиметра.

На большинстве мультиметров режим прозвонки совмещен с режимом проверки диодов. Его можно найти по значку диода на шкале селектора режимов. Если рядом с ним есть знак звуковой индикации — в нем наверняка есть и прозвонка.

Другой способ проверки варистора на пробой мультиметром является измерение сопротивления. Нужно установить прибор на максимальный предел измерения, в большинстве приборов это 2 МОма (мегаомы, обозначается как 2М или 2000К). Сопротивление должно быть равным бесконечности. На практике оно может быть ниже, в пределах 1-2 МОм.

Интересно! То же самое можно сделать мегаомметром, но он есть далеко не у каждого. Стоит отметить, что напряжение на выводах мегаомметра не должно превышать классификационное напряжение проверяемого компонента.

На этом заканчиваются доступные способы проверки варистора. В этот раз мультиметр поможет радиолюбителю найти неисправный элемент, как и в большом количестве других случаев. Хотя на практике мультиметр в этом деле не всегда нужен, потому что дело редко заходит дальше визуального осмотра. Заменяйте сгоревший элемент новым, рассчитанным на напряжение и диаметром не меньше чем был сгоревший, иначе он сгорит еще быстрее предыдущего.

Материалы по теме:

  • Как проверить резистор в домашних условиях
  • Прозвонка проводов и кабелей
  • Как пользоваться мультиметром

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика — степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.

Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности

Варистор — это… Что такое Варистор?

Обозначение на схеме

Вари́стор (англ. vari(able) (resi)stor — переменный резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП). В русскоязычной литературе часто применяется термин разрядник для обозначения варистора или устройства защиты от импульсных перенапряжений (УЗИП) на основе варистора.

Изготовление

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника — преимущественно порошкообразного карбида кремния SiC или оксида цинка ZnO, и связующего вещества (глина, жидкое стекло, лаки, смолы и др.).

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

где U и I — напряжение и ток варистора.

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Температурный коэффициент сопротивления варистора — отрицательная величина.

Применение

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,1 мА до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Параметры

  • Вольт-амперная характеристика
  • Классификационное напряжение, В — напряжение при определённом токе (обычно изготовители указывают при 1 мА), практической ценности не представляет.
  • Рабочее напряжение (Operating voltage) В (для пост. тока Vdc и Vrms — для переменного) — диапазон — от нескольких В до нескольких десятков кВ; данное напряжение должно быть превышено только при перенапряжениях.
  • Рабочий ток (Operating Current), А — диапазон — от 0,1 мА до 1 А
  • Максимальный импульсный ток (Peak Surge Current), А
  • Поглощаемая энергия (Absorption energy), Дж
  • Коэффициент нелинейности
  • Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышает 0,1 % на градус

Литература

  • В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольский, В. В. Сухоруков (Под ред. В. Г. Герасимова). Основы промышленной электроники: Учебник для вузов. — 2-е изд., перераб. и доп. — М.: Высшая школа, 1978.
  • В. Г. Колесников (главный редактор). Электроника: Энциклопедический словарь. — 1-е изд. — М.: Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2

Маркировка варисторов, обозначения

На корпусе каждого элемента имеется маркировка из букв и цифр, расшифровка которых поведает о характеристиках электронного элемента.

Первые буквы в маркировке означают вид элемента: СН – сопротивление нелинейное.

Цифра, следующая далее, говорит о материале, из которого изготовлен элемент, к примеру, 1 означает, что материал изготовления – карбид кремния.

Цифра в маркировке между двух дефисов – тип конструкции: 1 – стержневая, 2- дисковая.

Последующие цифры в ряду маркировки означают номинальное напряжение и допустимое отклонение в процентах.

Исправен ли варистор, как проверить?

Исправность элемента можно проверить несколькими способами:

  • Визуальным осмотром с целью определения подгораний, растрескиваний корпуса, потемнения корпуса, которые говорят о возможной неисправности элемента;
  • Измерением сопротивления с помощью омметра или мультиметра.

Порядок выполнения работы

  1. Собрать экспериментальную установку по рисунку 1. При выполнении, данном лабораторной работы используется лабораторный блок питания ВУП-2 (ВУП-1, ВУП-2М). Этот блок питания предназначен для питания ламповых электронных схем. На выходных клеммах блока питания ВУП-2 присутствует опасное для жизни постоянное напряжение до 350 В. Следует неукоснительно соблюдать правила техники безопасности. Все изменения в электрической схеме следует производить только при полностью обесточенной установке. Прикасаться к неизолированным токоведущим проводникам запрещается. При обесточивании установки не следует довольствоваться только отключением тумблера на передней панели блока питания. Следует извлечь штепсельную вилку блока питания из электрической розетки.
  2. Снять зависимость сопротивления варистора от приложенного напряжения. Пороговое напряжение для используемого в лабораторной работе варистора составляет 120 В. Во избежание перегрузки блока питания и выхода из строя исследуемого варистора превышать это напряжение запрещается.
  3. По результатам измерений построить вольтамперную характеристику варистора.

Виды и принцип работы

При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения.  То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

  1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
  2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

Варистор

Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

Общая информация

Электроустановки обладают изоляцией, которая соответствует номинальному напряжению. Реальный показатель может отличаться от теоретического значения. Но работа будет обеспечиваться в случае, если отклонение невелико и находится в рамках разрешенного диапазона. И всё же электрооборудование часто выходит из строя из-за импульса напряжения. Так называют резкое изменение характеристики в определённой точке, когда следует восстановление до первоначального уровня за небольшой промежуток времени. Импульсы могут быть грозовые и коммутационные. Чтобы защититься от таких перепадов, используют различные устройства, среди которых вентильные разрядники, фильтры, цепочки и много других разработок. Но наиболее успешным оказался варистор. Что это такое? Так называют эффективное и дешевое средство защиты от импульсов, которое базируется на нелинейных полупроводниковых резисторах. Принцип их действия прост: варистор включается параллельно к защищаемому оборудованию и в нормальном режиме на него влияет рабочее напряжение защищаемого устройства. Когда наступает экстренная ситуация, то он начинает функционировать как изолятор. Их отличительной чертой является симметричная и хорошо выраженная нелинейная вольт-амперная характеристика.

Маркировка и выбор варистора

На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

20D 471K

Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

Варистор

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

240*1,1*1,41=372 В.

Где 1,1 – коэффициент запаса.

При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

  • 100В (100~120)– 271k;
  • 200В (180~220) – 431k;
  • 240В (210~250) – 471k;
  • 240В (240~265) – 511k.