Giant Magellan Telescope
Вот ещё, какой самый большой телескоп в мире стоит отметить вниманием. «Гигантский Магелланов телескоп» — это проект Австралии и США
На данный момент строительство идёт полным ходом. GMT, как и E-ELT, находится в Чили. Более точная локация — обсерватория Лас-Кампанас, разместившаяся на высоте 2 516 метров над уровнем моря.
В основу данного изобретения будет положено главное зеркало, диаметром в 25.4 м. Кроме гигантского рефлектора, телескоп получит новейшую адаптивную оптику. Она даст возможность по максимуму устранить все искажения, которые создаёт атмосфера во время наблюдений.
Если верить учёным, то всё перечисленное даст возможность получить в 10 раз более качественное изображение, чем сейчас даёт «Хаббл», находящийся на орбите.
В теории GMT будет выполнять массу функций. При помощи этого изобретения учёные смогут находить экзопланеты и делать их снимки, исследовать галактическую, звёздную и планетарную эволюцию, чёрные дыры и проявление тёмной энергии. С GMT может даже получиться понаблюдать за самым первым поколением галактик.
Ориентировочно работы закончатся в 2020 году. Но разработчики настроены более позитивно – они говорят, что телескоп, скорей всего, увидит «первый свет» с четырьмя зеркалами. Их нужно только ввести в конструкцию. Если это так, то случится данное событие совсем скоро — на данный момент ведутся работы по созданию четвёртого зеркала.
Что лучше подойдет ребенку
Есть ли отличия между взрослой и детской техникой для наблюдения за небом? Конечно, и главное из них – это увеличение. Детские экземпляры никогда не будет увеличивать картинку так же, как и самый дешевый и простой взрослый. Но преимущества детских вариантов в их размерах – они вся достаточно компактны и легко транспортируются. Сквозь такие линзы можно рассмотреть:
- спутник Земли и его рельеф,
- созвездия,
- все планеты в Солнечной системе,
- Млечный Путь,
- Скопления звезд,
- туманности.
Нужен ли телескоп ребенку?
Безусловно, если он проявляет интерес к науке и астрономии.
Несмотря на маленькое изображение, ребенок сможет увидеть почти все небесные тела, что не только удовлетворит его интерес, но и побудит его учиться и познавать мир.
Поэтому к выбору следует подойти внимательно и обратить на некоторые характеристики покупаемой техники:
- система: линзовая или зеркальная,
- фокусное расстояние (идеальное для ребенка – это от 520 до 900 мм),
- диаметр линзы (от 40 до 130 мм).
Какие модели идеально подойдут малышу? Можно выбрать:
- Bresser Junior,
- Levenhuk,
- Bresser Space,
- Sky-Watcher Dob.
Какой телескоп выбрать для ребенка? Лучше всего взять рефрактор в моделях специально для детей. Он прост в управлении и не требует настроек.
Совет! Существуют приборы с системой автонаведения, которые могут искать объекты на небосклоне самостоятельно по заданным параметрам.
Оптические телескопы
Основная статья: Оптический телескоп
Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом,
а сам телескоп превращается в астрограф. Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).
По своей оптической схеме большинство телескопов делятся на:
- Линзовые (рефракторы или диоптрические) — в качестве объектива используется линза или система линз.
- Зеркальные (рефлекторы или катаптрические) — в качестве объектива используется вогнутое зеркало.
- Зеркально-линзовые телескопы (катадиоптрические) — в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.
Это может быть одиночная линза (система Гельмута), система линз (Волосова-Гальперна-Печатниковой, Бэйкер-Нана), ахроматический мениск Максутова (одноимённые системы), или планоидная асферическая пластина (системы Шмидта, Райта).
Иногда главному зеркалу придают форму эллипсоида (некоторые менисковые телескопы), сплюснутого сфероида (камера Райта), или просто немного фигуризованную неправильную поверхность. Этим удаётся остаточные аберрации системы.
Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звёздных телескопов.
В любительской астрономии помимо сфокусированного изображения используется несфокусированное, полученное выдвижением окуляра — для оценки блеска туманных объектов, например, комет, сравнением с блеском звёзд. Для подобной оценки блеска Луны в полнолуние, например, во время лунного затмения, используется «перевёрнутый» телескоп — наблюдение Луны в объектив.
Новейшая история телескопов
В дальнейшем телескопы продолжали расти в размерах и совершенствоваться изнутри. Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА — Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом.
Большой Телескоп Азимутальный
Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени — на сегодня его качество упало на 30% от первоначального — превращает его лишь в исторический памятник науке.
К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство.
Телескопы KECK I и KECK II
Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы — главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений — на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.
В 1999 году на орбиту был выведен телескоп Хаббл. Это совместный проект НАСА и Европейского космического агентства и входит в число Больших обсерваторий НАСА.
Космический телескоп Хаббл
Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле.
А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп «Джеймс Уэбб» (JWST) с 6,5-метровым зеркалом.
История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.
Последние достижения
В 2019 году в Китае был создан самый большой телескоп в мире, его диаметр составляет 500 метров. Строительство продолжалось около 8 лет.
Стоимость радиотелескопа составляет 180 млн долларов. При этом специалисты указывают, что до этого самым крупным телескопом в мире был радиотелескоп в Пуэрто-Рико, построенный более 50 лет назад, однако его диаметр составляет чуть больше 300 метров. Китайское изобретение может серьёзно ускорить процесс открытия самых разных явлений в космосе. Также ученые отмечают, что самый большой радиотелескоп в мире будет способен обнаружить отдаленные экзопланеты только по их радиоизлучению. Кроме того, специалисты подчеркнули, что китайский радиотелескопсможет обнаружить тысячи пульсаров.
Также в китайской обсерватории будут фиксировать радиовсплески, исходящие от неизвестных источников. Китайский радиотелескоп способен улавливать даже самые слабые сигналы.
Видео
https://youtube.com/watch?v=3AVcznAhSnU
Источники
- https://ru.wikipedia.org/wiki/Телескопhttps://mirnovogo.ru/teleskophttps://joinfor.ru/istorija-izobretenija-teleskopa-teleskop-galileja/https://replyua.net/nauka/170289-kitaycy-sozdali-samyy-bolshoy-teleskop-v-mire.htmlhttp://www.astrotime.ru/history.html
Классические оптические схемы
Схема Галилея
Схема рефрактора Галилея
Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях, и иногда в самодельных любительских телескопах.
Схема Кеплера
Схема рефрактора Кеплера
Иоганн Кеплер в г. усовершенствовал телескоп, заменив рассеивающую линзу в окуляре собирающей. Это позволило увеличить поле зрения и вынос зрачка, однако система Кеплера даёт перевёрнутое изображение. Преимуществом трубы Кеплера является также и то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу. По сути, все последующие телескопы-рефракторы являются трубами Кеплера. К недостаткам системы относится сильная хроматическая аберрация, которую до создания ахроматического объектива устраняли путём уменьшения относительного отверстия телескопа.
Схема Ньютона
Оптическая схема телескопа Ньютона
Такую схему телескопов предложил Исаак Ньютон в 1667 году. Здесь плоское диагональное зеркало, расположенное вблизи фокуса, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но если относительное отверстие не слишком большое, оно может быть и сферическим [источник не указан 842 дня].
Схема Грегори
Оптическая схема телескопа Грегори
Эту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota. Главное зеркало в таком телескопе — вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад — в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния.
Схема Кассегрена
Оптическая схема телескопа Кассегрена
Схема была предложена Лораном Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало вогнутое (в оригинальном варианте параболическое). Оно отбрасывает лучи на меньшее вторичное выпуклое зеркало (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет много как зеркальных модификаций, включая апланатичный Ричи-Кретьен, со сферической формой поверхности вторичного (Долл-Кирхем) или первичного зеркала, так и зеркально-линзовых.
Отдельно стоит выделить систему Кассегрена, модифицированную советским оптиком Д. Д. Максутовым — , ставшую одной из самых распространённых систем в астрономии, особенно в любительской.
Схема Ричи-Кретьена
Оптическая схема телескопа Ричи—Кретьена—Кассегрена
Система Ричи — Кретьена — усовершенствованная система Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы — около 4°.
Принцип работы и назначение телескопа
В телескопе-рефракторе в качестве объектива используется большая линза, собирающая и фокусирующая свет, а изображение рассматривается с помощью окуляра, состоящего из одной или нескольких линз. Основной проблемой при конструировании телескопов-рефракторов является хроматическая аберрация (цветная кайма вокруг изображения, создаваемого простой линзой вследствие того, что свет различных длин волн фокусируется на разных расстояниях).
Первый телескоп-рефлектор изобрел Ньютон по своей схеме, называемой системой Ньютона.
Наряду с оптическими телескопами имеются телескопы, собирающие электромагнитное излучение в других диапазонах. Например, широко распространены различные типы радиотелескопов (с параболическим зеркалом; неподвижные и полноповоротные; типа РАТАН-600; синфазные; радиоинтерферометры). Имеются также телескопы для регистрации рентгеновского и гамма-излучения. Поскольку последнее поглощается земной атмосферой, рентгеновские телескопы обычно устанавливаются на спутниках или воздушных зондах. Гамма-астрономия использует телескопы, располагаемые на спутниках.
Возможности изобретения
Проект по строительству самого большого телескопа в мире был профинансирован полностью, так что с уверенностью можно заявить – возведение обсерватории будет завершено. Есть даже приблизительная дата введения устройства в эксплуатацию – 2024 год.
Возможности у него впечатляющие. Если верить учёным, то самый большой телескоп в мире сможет не то, что находить планеты, близкие Земле по размерам – он будет способен изучить состав их атмосферы при помощи спектрографа! А это открывает невиданные ранее перспективы в изучении космических объектов, находящихся вне Солнечной системы.
Кроме этого, с помощью E-ELT учёные смогут исследовать ранние стадии развития космоса, и даже выяснить точные данные об ускорении расширения Вселенной. Ещё удастся проверить физические константы на постоянство во времени, и даже найти на обнаруженных планетах органику и воду.
По сути, самый огромный телескоп в мире – это прямой путь к ответам на ряд фундаментальных научных вопросов, связанных с космосом и даже возникновением жизни.
И если действительно всё перечисленное (или хотя бы что-то) будет иметь место быть, то это окажется самый оправданный миллиард долларов, вложенный в изобретение чего-либо. $1 000 000 000 — заявленная Европейской южной обсерватории стоимость самого большого телескопа в мире, фото которого представлено выше.
Лидер среди рефракторов
В далёком 1900 году в Париже прошла Всемирная астрономическая выставка. Специально для экспозиции было сконструировано изобретение, ставшее самым большим в мире телескопом-рефрактором. Его фотография представлена выше.
Рефракторы – это привычные всем нам оптические телескопы, для современных версий которых характерна компактность. Их конструкция намного проще, чем у перечисленных выше изобретений. В рефракторах для собирания света используется система линз, именуемая объективом.
Но французское изобретение впечатляет своими размерами. Диаметр линзы достигает 59 дюймов (это 125 сантиметров), а фокусное расстояние составляет 57 метров.
Естественно, это устройство практически не использовалось, как астрономический инструмент. Но зрелище было впечатляющим. К сожалению, в 1909 году его демонтировали и разобрали.
Всё потому, что компания, спонсировавшая процесс по изготовлению данного устройства (занявший 14 лет), обанкротилась. Об этом фирма заявила сразу после окончания выставки. Поэтому в 1909-м изобретение выставили на аукцион. Однако покупателя на столь неординарную вещь не нашлось, и её постигла печальная участь, о которой было уже сказано. Так что посмотреть на телескоп в наши дни невозможно.
Реплика от «Швабе»
Сегодня ощутить себя астрономами далекого прошлого можно благодаря ученым из столицы Сибири. В 2008 году на Новосибирском приборостроительном заводе (НПЗ) холдинга «Швабе» воссоздали телескоп-рефлектор, созданный Исааком Ньютоном в 1668 году. Первые экземпляры устройства выпустили как памятные сувениры для гостей Новосибирска, приехавших посмотреть на полное солнечное затмение, так называемое русское. Но спрос оказался таким высоким, что телескопы продолжали выпускать по единичным заказам, а потом и вовсе решили запустить серийное производство – под названием ТАЛ-35.
Чертежи телескопа создавали практически с нуля – на основе архивной информации. Оптическая труба ТАЛ-35 состоит из двух частей: подвижной и основной. Монтировка (подвижная опора телескопа) представляет собой деревянный шар. В рефлекторе Ньютона зеркало повернуто к оптической оси под углом 45 градусов, поэтому наблюдение ведется не с торца телескопа, а в боковой части.

Реплика телескопа Ньютона. Фото: «Швабе»
Детали телескопа Ньютона изготавливают на тех же линиях, где серийно производят линейку известных в мире телескопов ТАЛ. Единственное отличие копии от исторического оригинала – это качество изображения. Если Ньютон использовал для отражения полированную бронзовую пластину, то реплику оснастили оптическим зеркалом, обработанным алюминием. Таким образом, несмотря на сувенирное назначение, эти телескопы можно использовать и для наблюдений.
Астрономия – одна из важнейших наук, формирующих мировоззрение. Несколько лет назад она вернулась в обязательную школьную программу старших классов. Выпускаются новые учебники, в ЕГЭ добавляются астрономические вопросы. Как отмечает генеральный директор НПЗ Василий Рассохин, в создании телескопа ТАЛ-35 новосибирцы руководствовались не только популярностью прибора как сувенира: «Мы уверены, что телескопы Ньютона станут первым шагом в большую науку для многих молодых людей».
Телескопы рефлекторы
Большинство любительских телескопов-рефлекторов имеет фокальные отношения f/6 — f/8; по сравнению с рефракторами они удобнее при наблюдениях, для которых требуются более широкое поле зрения и меньшее увеличение.
Телескопы-рефлекторы бывают разных типов. В практике любительских наблюдений чаще всего используются рефлекторы двух типов: системы Ньютона и системы Кассегрена.
В телескопе системы Ньютона вторичное зеркало плоское, поэтому фокусное расстояние и фокальное отношение объектива постоянны. В телескопе системы Кассегрена вторичное зеркало выпуклое, что значительно увеличивает общее фокусное расстояние телескопа и тем самым изменяет его эффективное фокальное отношение. По этой причине рефлекторы системы Кассегрена находят применение при наблюдениях того же типа, что и телескопы-рефракторы.
Телескоп типа рефлектор
Самое большое преимущество рефлекторов — их низкая стоимость. При той же апертуре они значительно дешевле телескопов любого другого типа. Кроме того, нужное зеркало для объектива рефлектора можно изготовить собственными силами или в крайнем случае — просто купить, а трубу такого телескопа нетрудно собрать в домашних условиях.
Практически все любительские телескопы с большой собирающей поверхностью (диаметры объектива свыше 200 мм) являются рефлекторами. Минимальный диаметр объектива рефлекторов, которые обычно используют для общих наблюдений, составляет около 150 мм; такой рефлектор стоит не дороже рефрактора с объективом диаметром 75 мм. Поскольку рефлектор имеет большую собирающую поверхность, в него можно наблюдать более слабые объекты, однако он не столь компактен, как рефрактор.
Рефлекторы меньших размеров, имеющие малые фокальные отношения, по своим характеристикам занимают промежуточное положение между биноклями и обычными рефлекторами; к тому же они достаточно компактны.
Однако у рефлекторов есть и недостатки. Наиболее существенные из них — необходимость время от времени обновлять отражающие, покрытия и юстировать оптические элементы. При отсутствии дорогостоящего оптического стекла, герметически закрывающего трубу рефлектора, приходится укрывать каждое зеркало телескопа крышкой или чехлом, чтобы воспрепятствовать проникновению пыли.
При наблюдениях окуляр в телескопе системы Ньютона может оказаться в неудобном положении; чтобы избежать этого, следует предусмотреть возможность вращения трубы телескопа.
Если труба рефлектора не закрыта герметически оптическим окном, то холодный наружный воздух, проникая в нее, создает там воздушные потоки, ухудшающие изображение. Весьма эффективным средством борьбы с этим недостатком может быть использование больших теплоизоляционных труб, но чаще для этой цели применяют «трубы» скелетной конструкции.
К сожалению, в последнем случае возникают другие проблемы, связанные с потоками теплого воздуха от самого наблюдателя (так что при наблюдениях старайтесь одевать больше теплоизолирующей одежды!). Кроме того, при этом увеличивается выпадение росы на оптические элементы. Поэтому большое значение приобретает правильная конструкция самой обсерватории.
Катадиоптрический (зеркально-линзовый) телескоп
Крупнейшие оптические телескопы
Телескопы-рефракторы
Обсерватория | Местонахождения | Диаметр, см / дюйм | Год сооружения / демонтажа | Примечания |
---|---|---|---|---|
Телескоп всемирной Парижской выставки 1900 года. | Париж | 125 / 49.21″ | 1900 / 1900 | Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата. |
Йеркская обсерватория | Уильямс Бэй, Висконсин | 102 / 40″ | 1897 | |
Обсерватория Лика | гора Гамильтон, Калифорния | 91 / 36″ | 1888 | |
Парижская обсерватория | Медон, Франция | 83 / 33″ | 1893 | Двойной, визуальный объектив 83 см, фотографический — 62 см. |
Потсдамский астрофизический институт | Потсдам, Германия | 81 / 32″ | 1899 | Двойной, визуальный 50 см, фотографический 80 см. |
Обсерватория Ниццы | Франция | 76 / 30″ | 1880 | |
Пулковская обсерватория | Санкт-Петербург | 76 / 30″ | 1885 | |
Обсерватория Аллегейни | Питтсбург, Пенсильвания | 76 / 30″ | 1917 | |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1893 | |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1897 | Двойной, визуальный 71 см, фотографический 66 |
Обсерватория Архенхольда | Берлин, Германия | 70 / 27″ | 1896 | Самый длинный современный рефрактор |
Солнечные телескопы
Обсерватория | Местонахождения | Диаметр, м | Год сооружения |
---|---|---|---|
Китт-Пик | Тусон, Аризона | 1,60 | 1962 |
Сакраменто-Пик | Санспот, Нью-Мексико | 1,50 | 1969 |
Крымская астрофизическая обсерватория | Крым | 1,00 | 1975 |
Шведский солнечный телескоп | Пальма, Канары | 1,00 | 2002 |
Китт-Пик, 2 штуки в общем корпусе с 1,6 метра | Тусон, Аризона | 0,9 | 1962 |
Тейде | Тенерифе, Канары | 0,9 | 2001 |
Саянская солнечная обсерватория, Россия | Монды, Бурятия | 0,8 | 1975 |
Китт-Пик | Тусон, Аризона | 0,7 | 1973 |
Институт физики Солнца, Германия | Тенерифе, Канары | 0,7 | 1988 |
Митака | Токио, Япония | 0,66 | 1920 |
Камеры Шмидта
Обсерватория | Местонахождения | Диаметр коррекционной пластины — зеркала, м | Год сооружения |
---|---|---|---|
Обсерватория Карла Шварцшильда | Таутенбург, Германия | 1,3-2,0 | 1960 |
Паломарская обсерватория | гора Паломар, Калифорния | 1,2-1,8 | 1948 |
Обсерватория Сайдинг-Спринг | Кунабарабран, Австралия | 1,2-1,8 | 1973 |
Токийская астрономическая обсерватория | Токио, Япония | 1,1-1,5 | 1975 |
Европейская южная обсерватория | Ла-Силья, Чили | 1,1-1,5 | 1971 |
Телескопы-рефлекторы
Название | Местонахождения | Диаметр зеркала, м | Год сооружения |
---|---|---|---|
Гигантский южно-африканский телескоп, SALT | Сатерленд, ЮАР | 11 | 2005 |
Большой Канарский телескоп | Пальма, Канарские острова | 10,4 | 2002 |
Телескопы Кек | Мауна-Кеа, Гавайи | 9,82 × 2 | 1993, 1996 |
Телескоп Хобби-Эберли, HET | Джефф-Дэвис, Техас | 9,2 | 1997 |
Большой бинокулярный телескоп, LBT | гора Грэхем (англ.), Аризона | 8,4 × 2 | 2004 |
Очень большой телескоп, ESO VLT | Серро Параналь, Чили | 8,2 × 4 | 1998, 2001 |
Телескоп Субару | Мауна-Кеа, Гавайи | 8,2 | 1999 |
Телескоп Северный Джемини, GNT | Мауна-Кеа, Гавайи | 8,1 | 2000 |
Телескоп Южный Джемини, GST | Серро Пашон, Чили | 8,1 | 2001 |
Мультизеркальный телескоп (англ.), MMT | гора Хопкинс (англ.), Аризона | 6,5 | 2000 |
Магеллановы телескопы | Лас Кампанас, Чили | 6,5 × 2 | 2002 |
Большой телескоп азимутальный, БТА | гора Пастухова, Россия | 6,0 | 1975 |
Большой Зенитный телескоп, LZT | Мейпл Ридж, Канада | 6,0 | 2001 |
Телескоп Хейла, MMT | гора Паломар, Калифорния | 5,08 | 1948 |
Экстремально большие телескопы
(Экстремально большой телескоп)
Название | Изображение(рисунок) | Диаметр (м) | Площадь (м²) | Главноезеркало | Высотам | Дата первого света |
---|---|---|---|---|---|---|
Европейский чрезвычайно большой телескоп(E-ELT) | 39 | 1116 м² | 798 × 1,45 м шестиугольных сегментов | 3060 | 2024 год | |
Тридцатиметровый телескоп (TMT) | 30 | 655 м² | 492 × 1,45 м шестиугольных сегментов | 4050 | 2022 год | |
Гигантский Магелланов телескоп (GMT) | 24,5 | 368 м² | 7 × 8,4 м | 2516 | 2021 год |
Какие упражнения делать, чтобы похудеть за неделю
Чтобы быстро похудеть всего за неделю, помимо выполнения упражнений, нужно соблюдать режим приёма пищи и определенную диету, подобрать которую необходимо с учетом всех важных витаминов и микроэлементов. Любой врач вам скажет, что при соблюдении строго режима питания заниматься спортом нужно с умом. Если вы чувствуете сильную усталость и головокружение, от выполнения упражнения стоит отказаться.
- Встаньте прямо. Поднимите вперед согнутую ногу, согнутую в колене. Медленно выпрямите ее. В такой позе нужно постоять несколько секунд.
- Выпад ногами вперед – одно из максимально эффективных упражнений, которое поможет быстро похудеть в ногах.
- Чтобы сделать следующее упражнение, нужно лежать на спине. Ноги немного приподнимите над полом, приступайте к выполнению «ножниц». Следите за равномерностью вдохов и выдохов.
Оптические телескопы
Основная статья: Оптический телескоп
Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом,
а сам телескоп превращается в астрограф. Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).
По своей оптической схеме большинство телескопов делятся на:
- Линзовые (рефракторы или диоптрические) — в качестве объектива используется линза или система линз.
- Зеркальные (рефлекторы или катаптрические) — в качестве объектива используется вогнутое зеркало.
- Зеркально-линзовые телескопы (катадиоптрические) — в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.
Это может быть одиночная линза (система Гельмута), система линз (Волосова-Гальперна-Печатниковой, Бэйкер-Нана), ахроматический мениск Максутова (одноимённые системы), или планоидная асферическая пластина (системы Шмидта, Райта).
Иногда главному зеркалу придают форму эллипсоида (некоторые менисковые телескопы), сплюснутого сфероида (камера Райта), или просто немного фигуризованную неправильную поверхность. Этим удаётся исправить остаточные аберрации системы.
Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звездных телескопов.
В любительской астрономии помимо сфокусированного изображения используется несфокусированное, полученное выдвижением окуляра — для оценки блеска туманных объектов, например, комет, сравнением с блеском звёзд. Для подобной оценки блеска Луны в полнолуние, например, во время лунного затмения, используется «перевёрнутый» телескоп — наблюдение Луны в объектив.