Что такое потенциал в электричестве

Разность потенциалов — энергетическая характеристика

Любой заряд при своем движении в электрическом поле имеет начальную позицию, точку в пространстве поля, которая характеризуется потенциалом φначальное, и конечную точку, которая также имеет свой потенциал φконечное. Разность между двумя этими величинами потенциалов называется Δφ — разность потенциалов, а иначе еще называют электрическим напряжением поля.

Следует различать электрическое напряжение поля в электростатическом потенциальном поле, где нет вихрей, и падение электрического напряжения в электротехнических цепях, а также напряжение, которое является ЭДС (электродвижущая сила). Для того, чтобы не было путаницы, обычно для электрического поля употребляют выражение «разность потенциалов», для электрических цепей — «падение напряжения», а для источников тока — «ЭДС источника». Когда отсутствует понимание различия таких определений, становится трудно разобраться в сути сложных явлений в мире электротехники, электроники и автоматики. Что же роднит все эти три такие похожие, но всё-таки различные понятия? Прежде всего общее здесь то, что все три характеризуют энергетическое состояние. Но далее, при ответе на вопрос «Энергетическое состояние чего?», идут различия. Разность потенциалов характеризует энергетику электрического потенциального поля, падение напряжения — для участка электрической цепи, а ЭДС источника — это энергетическая характеристика устройства создающего электрический ток. Общность при ответе на вопрос: «Что это?», а различия при ответе на вопрос «Где?». Всё познается в сравнении, поэтому необходимо отлично ориентироваться во всех трёх вышеуказанных понятиях.

Имеем некоторый путь пройденный зарядом q от точки A до точки B, от начального потенциала, к конечному, а разница между ними и есть разность потенциалов. О чем это нам говорит? Если Δφ=φAB (разность потенциалов), тогда чтобы узнать какую работу, которую совершил заряд проделавший путь, нам надо Δφ умножить на величину заряда q, причем надо учесть знак заряда.

Полученное значение является работой, которую совершает заряд при перемещении. Иначе говоря, потенциальная энергия поля преобразуется в кинетическую энергию заряда, а так как заряд, в случае движения в сторону противоположного ему знака уменьшает напряженность поля, то потенциальная энергия поля уменьшится.

В случае, если некоторые не кулоновские силы воздействуют на заряд и тем самым переместят его в сторону поля, где знак такой же как у заряда, то работа будет совершена с противоположным знаком, точнее сказать она будет затрачена извне и общее энергетическое состояние поля увеличится. В одном случае потенциальная энергия поля уменьшается, за счет того, что часть этой энергии переходит в кинетическую, а в другом случае, если действуют на заряд внешние механические силы против кулоновских сил — потенциальная энергия возрастает из внешнего источника. В первом случае заряд движется в сторону уменьшения своего энергетического состояния, а во втором случае он движется в сторону увеличения своего энергетического состояния. Соответственно работа совершатся может либо с положительным знаком, либо с отрицательным.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Клетка Фарадея

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Энергия электрического поля

Предположим, что имеется некоторый объем пространства, которое «наполнено» электрическим полем, то есть есть источник поля и благодаря дальнодействию мы говорим, что это пространство наполнено полем. Разумеется, что в виде вещества нет никаких силовых линий поля, это воображаемые в уме представления, но в этой области пространства любой заряд будет реагировать проявлением кулоновской силы. Можно ли как-то характеризовать этот объем пространства энергетически? Так как электрическое поле является потенциальным, то можно говорить о его потенциальной энергии.

Предположим, что вышеозначенный объем пространства — это объем V внутри плоского конденсатора, а на обкладках конденсатора имеется заряд Q. Разность потенциалов между обкладками равна Δφ, тогда мы сможем вычислить потенциальную энергию электрического поля по следующей формуле:

Эта формула действительна при условии, что объем является физическим вакуумом, то есть там нет никаких физических частиц. Если же пространство объемом V будет заполнено веществом, тогда необходимо ε (диэлектрическая постоянная) умножить на ε — диэлектрическая проницаемость среды (вещества), которым заполнен объем V.

Формула тогда имеет вид:

Пример приведен только для энергии поля плоского конденсатора, это всего лишь один случай из многих, но он дает возможность увидеть важные значимые соотношения. Например, из формулы можно узнать, что один литр объема (10-3 м3) при напряжении (разности потенциалов) в 107 Вольт способен запасти лишь незначительное количество энергии, всего лишь 0,44 Джоулей. Это значение для вакуума, но есть такие вещества, которые имеют диэлектрическую проницаемость во много раз больше единицы. Для воды это значение равно 81, а для титаната бария может доходить до 10000. Соответственно во столько же раз увеличивается запасенная энергия.

Дата: 10.05.2015

Возникновение — контактная разность — потенциал

Возникновение контактной разности потенциалов происходит прежде всего потому, что различные металлы характеризуются разной работой выхода. Электроны легче переходят из металла, для которого работа выхода имеет меньшее значение, в металл, для которого работа имеет большее значение, чем в обратном направлении. Первый металл заряжается положительно, второй отрицательно. При этом на их границе возникает двойной слой разноименных зарядов, внутри которого существует сильное электрическое поле. Легко понять, что это поле будет тормозить дальнейший переход электронов из первого металла во второй и в то же время способствовать их обратному переходу. В результате между этими двумя процессами устанавливается динамическое равновесие, при котором напряженность поля в двойном слое, а следовательно, и разность потенциалов, до которой заряжаются металлы, достигает максимального значения.

Возникновение контактной разности потенциалов происходит вследствие двух причин: 1) разная работа выхода электронов, у различных металлов. Металл, имеющий меньшее значение работы выхода электронов, легче их теряет и заряжается положительно, а металл с большей работой выхода накапливает электроны и заряжается отрицательно.

Энергетическая диаграмма возникновения внешней контактной разности.| Энергетическая диаграмма возникновения вну.

Возникновение контактной разности потенциалов в случае контакта металл-полупроводник принципиально не отличается от контакта металл-металл, так как она будет определяться разностью работ выхода металла и полупроводника. Однако отличие свойств полупроводника от металла, обусловленное возможностью значительного изменения концентраций носителей заряда в полупроводниках, приводит к возникновению специфических явлений на контакте металл-полупроводник.

Возникновение контактной разности потенциалов между соприкасающимися металлическими проводниками было открыто в конце XVI11 в.

Схема, поясняющая контактную разность потенциалов в.

Возникновение контактной разности потенциалов определяется следующим процессом. При соприкосновении металлов в месте их контакта происходит взаимное перемещение электронов.

Вольт-амперная характеристика полупроводникового диода.

Объясните возникновение контактной разности потенциалов в контакте двух металлов и двух полупроводников.

Рассмотрим возникновение контактной разности потенциалов при контакте полупроводника и металла.

К объяснению контактной разности потенциалов.

Рассмотрим подробнее возникновение контактной разности потенциалов. Электроны в металле находятся в потенциальной яме. Точки 2 и-3 находятся при одном потенциале, как относящиеся к одному и тому же металлу. Точки 4 и 5 находятся при одном потенциале. Между точками 5 и 6 ( металл В и вакуум) снова будет скачок потенциала, так как электроны в металле В находятся в потенциальной яме. Эта последняя называется внешней контактной разностью потенциалов и она-то обычно и измеряется, поэтому ее часто называют просто контактной разностью потенциалов VAB — Благодаря разности потенциалов между точками / и 6 в зазоре между концами металлов А и В возникает электрическое поле, а на свободных поверхностях металлов А к В — электрические заряды.

Характеристики р-ге-перехода.

С другой стороны, возникновение контактной разности потенциалов и электрического поля в переходе приводит к появлению тока проводимости, направленного навстречу диффузионному току. Ток проводимости образуется за счет дрейфа через переход дырок из области с электропроводностью n — титга, где они являются неосновными носителями, в область с электропроводностью р-типа и дрейфа электронов через переход из области с электропроводностью р-типа в область с электропроводностью л-типа. В установившемся режиме при отсутствии внешнего напряжения, поданного на пластину с p — n — переходом, между обоими токами ( проводимости и диффузионным) устанавливается динамическое равновесие. И так как они направлены навстречу друг другу, общий ток через пластину и переход равен нулю. Высота потенциального барьера автоматически устанавливается такой, чтобы было равновесие между двумя токами.

Все остальные энергетические уровни после возникновения контактной разности потенциалов должны соответственно изогнуться. При этом энергетический уровень потолка верхней свободной зоны должен быть непрерывным. Обычно энергетический уровень потолка верхней свободной зоны является энергетическим уровнем потолка зоны проводимости, так как свободные энергетические зоны перекрываются друг с другом.

Внешняя контактная разность — потенциал

В чем состоит разница в экспериментальном осуществлении внешней и внутренней контактной разности потенциалов. В чем состоят физические механизмы возникновения внутренней и внешней контактной разности потенциалов.

Диаграмма потенциальной энергии электрона в случае контакта двух.

Произведение заряда электрона е на) представляет собой работу выхода электрона из металла. Разность т я — г 2 ек называется внешней контактной разностью потенциалов.

Сопоставляя это выражение с уравнением ( VIII, 22), мы видим, что Е ек. Следовательно, разность между потенциалами точек нулевых зарядов двух металлов численно равна внешней контактной разности потенциалов между ними. Этот вывод, сделанный А. Н. Фрумкиным, заставляет рассматривать ф ( 0) как весьма важную физическую характеристику металлов.

Это произошло потому, что мы не учли энергию UK, обусловленную внешней контактной разностью потенциалов Фк, которую необходимо добавить к общей энергии или отнять от нее в зависимости от направления обхода.

Сопоставляя это выражение с уравнением ( VIII, 22), мы видим, что Е — ек. Следовательно, разность между потенциалами то ек нулевых зарядов двух металлов численно равна внешней контактной разности потенциалов между ними. Этот вывод, сделанный А. Н. Фрумкиным, заставляет рассматривать q ( 0) как весьма важную физическую характеристику металлов.

Поверхность калия в фотоэлементе освещают светом длиной волны 95 ммк. Определить минимальную величину задерживающей разности потенциалов, которую необходимо приложить извне для полного прекращения фототока, если известно, что внешняя контактная разность потенциала, равная 0 7 в, направлена противоположно приложенному напряжению.

В случае контакта двух разнородных металлов при выходе электрона из одного металла в другой совершается работа, равная разности работ выхода соприкасающихся металлов. Значения контактных потенциалов выхода зависят от рода металлов, а также от состояния соприкасающихся поверхностей и находятся в пределах от нескольких десятых долей вольта до нескольких вольт. Таким образом, внешняя контактная разность потенциалов значительно превосходит внутреннюю.

Контур из двух разнородных металлов в растворе электролита.

Оба вывода электрометра находятся в одной и той же фазе — вакууме. Как показывает опыт, стрелка электрометра отклоняется при такой установке, подтверждая наличие разности потенциалов между двумя точками в вакууме, находящимися на близком расстоянии от поверхности двух различных металлов, контактирующих между собой. Эта разность потенциалов носит название внешней контактной разности потенциалов или, иначе, вольта-потенциала. Обозначим ее величину символом AV.

Фотоэлемент состоит из двух разнородных электродов, один из которых освещают монохроматическим светом длиной волны 185 ммк. Фототек возникает лишь при наличии приложенного извне ускоряющего напряжения 0 4 в. Известно, кроме того, что внешняя контактная разность потенциалов между данными электродами равна 1 81 в.

В этом случае перераспределение ионов между электродом и раствором не будет и двойной электрический слой не возникает. Такой раствор называется нулевым раствором, а электрический потенциал на электроде — потенциалом нулевого заряда. Разность потенциалов двух электродов в нулевом растворе равна внешней контактной разности потенциалов электродов, которая, в свою очередь, определяется разностью работ выхода электронов для этих металлов. Так, при контакте двух разных металлов электроны с поверхности одно-то из них переходят на поверхность другого до установления равновесия и постоянной разности потенциалов, равной разности между их потенциалами пулевых зарядов.

При соприкосновении двух различных металлов во внешнем пространстве появляется электрическое поле, а на поверхности металлов возникают заряды.

Согласно сказанному выше на обоих проводниках появляются электрические заряды, а между свободными их концами возникает электрическое поле. Разность потенциалов между любыми двумя точками а ж б ( рис. 336), находящимися вне проводников, но расположенными в непосредственной близости от их поверхностей, называется внешней контактной разностью потенциалов или просто контактной разностью потенциалов.

Правая часть последнего равенства представляет собой внешнюю контактную разность потенциалов обоих металлов Мех и Ме. Если теперь электрон из точки а возле поверхности металла Мех перенести в точку Ь в вакууме, то работа переноса по этому второму пути будет равна произведению заряда электрона на внешнюю контактную разность потенциалов для металлов Мех и Me, — так называемый вольта-потенциал, который ранее мы обозначали символом ДУ.

Для чего нужен потенциометр электрику

Данный прибор широко применяется в практике для модуляции напряжения. Дело в том, что у многих источников (особенно заточенных под автономное функционирование: аккумуляторные элементы, солнечные батареи и т.д.) константное напряжение, не поддающееся управлению без специальных устройств, что может вызвать проблемы. Чтобы уменьшить исходное напряжение такого элемента, используют устройства-делители, снабженные потенциометрами.

Что такое потенциал в электричествеПотенциометр-реостат

Как работает потенциометр? Он представляет собой резистор, имеющий пару выводов и подвижный ползунок с еще одним выводом. Подключаться такое переменное устройство сопротивления может двумя способами:

  1. По типу реостата, с использованием ползункового вывода и одного из пары других. Сопротивление замеряется движением ползунка по корпусу резистора. Регуляция цепного электротока в таком случае возможна при последовательном подключении такого реостата и источника напряжения.
  2. Потенциометрическим методом, задействующим каждый вывод из имеющейся у прибора тройки. Два главных вывода включаются параллельно источнику, снятие сниженного напряжения реализуется с ползункового механизма и одного вывода. В этом случае через резисторное устройство течет электроток, создающий спад напряжения между ползунком и боковыми выводами. В такой модели на источник питания ложится большая нагрузка, так как для точности регуляции и отсутствия сбоев необходимо, чтобы резисторное сопротивление в несколько раз уступало нагрузочному.

Что такое потенциал в электричествеПотенциометрическое подключение прибора

Таким образом, понятие потенциала используется в разных областях физики: как в механике, так и в изучении электричества. В последнем случае оно выступает в качестве характеристики поля. Непосредственно рассматриваемая величина измерению не поддается, зато можно измерить разность, тогда один заряд берется за точку отсчета.

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

F=q∙E+q∙vхB,

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение

Силу F воздействия на частицу принято называть силой Лоренца.

Что такое потенциал в электричествеПоток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Ускоряющая разность — потенциал

Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы его скорость составила 95 % скорости света.

Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы его скорость составила 95 % скорости света.

Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы его скорость составила 95 % скорости света.

Система первичного формирования ускоренного пучка ионон, извлекаемых из плазменного источника. г, з, з — электроды. / — вогнутая граница плазмы, 77-плоская, IJI — выпуклая.| Зависимость термоядерного выигрыша в одинарной мишени от величины вложенной в мишень энергии.

При увеличении ускоряющей разности потенциалов U граница плазмы из выпуклой ( / / /) становится вогнутой ( /), создаются условия для фокусировки пучка. Электрод 2 с отверстием д я пучка, имеющий потенциал ниже потенциала заземленного электрода 3, удерживает электроны, компенсирующие ионный пучок, и ускоряет сам ионный пучок.

Альфа-частица прошла ускоряющую разность потенциалов U — 104 В и влетела в область взаимно перпендикулярных электрического и магнитного полей.

После прохождения некоторой ускоряющей разности потенциалов электроны поступают в однородное магнитное поле. При каком значении ускоряющего напряжения период обращения электронов возрастает на 50 % по сравнению с его значением для малых скоростей.

Электрон, прошедший ускоряющую разность потенциалов 1 0 кВ, влетает в однородное магнитное поле с индукцией 10 0 мТл под углом а к линиям индукции. Определить радиус и шаг спиральной линии, по которой будет двигаться электрон, если а. Заряд и масса электрона равны соответственно 1 6 — 10 — 19Кл и 9 1 — 10 — 31 кг.

Электрон, пройдя ускоряющую разность потенциалов 88 кВ, влетает в однородное магнитное поле перпендикулярно его линиям индукции. Индукция поля равна 0 01 Тл.

Электрон, прошедший ускоряющую разность потенциалов 500 В, попал в вакууме в однородное магнитное поле и движется по окружности радиусом 10 см. Определить величину напряженности магнитного поля, если скорость электрона перпендикулярна к силовым линиям.

Определить, какую ускоряющую разность потенциалов должен пройти протон, чтобы его скорость составила 90 % скорости света.

Определить, какую ускоряющую разность потенциалов должен пройти электрон, чтобы его продольные размеры уменьшились в два раза.

Определить, какую ускоряющую разность потенциалов должен пройти протон, чтобы длина волны де Бройля X для него была равна 1 нм.

Электрон, прошедший ускоряющую разность потенциалов 1 6 кВ, влетает в поперечное однородное магнитное поле с индукцией 5 — 10 — 3 Тл. Определить: а) радиус круговой орбиты электрона и период его обращения; б) параметры траектории, если электрон влетает в магнитное поле под углом 30 к силовым линиям.

Протон, прошедший ускоряющую разность потенциалов 600 В, влетает в однородное магнитное поле с индукцией 0 3 Тл и движется по окружности.