В словаре Синонимов
долговечность, живучесть, жизнестойкость, крепость, устойчивость, надёжность, основательность, фундаментальность, солидность, стойкость; крепкость, ненарушимость, носкость, обеспеченность, капитальность, убедительность, неопровержимость, нерушимость, несокрушимость, безубыточность, безошибочность, добротность, стабильность, нерасторжимость, неразрушаемость, незыблемость, долговременность, дебелость, твердость, постоянность, неразрушимость, достоверность, надежность, неразрывность, несомненность, неуязвимость, беспроигрышность, непоколебимость. Ant. недолговечность
Общие требования, предъявляемые к конструкционным материалам
Конструкционными называются материалы, предназначенные для изготовления деталей машин, инженерных конструкций, подвергающиеся механическим нагрузкам. Детали машин характеризуются большим разнообразием форм и размеров, а также различными условиями эксплуатации. Они работают при статических, циклических и ударных нагрузках, при низких и высоких температурах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, основные из которых — эксплуатационные, технологические и экономические.
Эксплуатационные требования имеют первостепенное значение. Для того чтобы обеспечить работоспособность конкретных машин и приборов, материал должен иметь высокую конструкционную прочность.
Конструкционной прочностью называется комплекс механических свойств, обеспечивающий надежную и длительную работу материала в заданных условиях эксплуатации.
Условия эксплуатации определяются рабочей средой (жидкая, газообразная, ионизированная, радиационная и др.), которая может оказывать отрицательное влияние на механические свойства материала. В результате химического и теплового воздействия она может вызывать повреждения поверхности вследствие коррозионного растрескивания, окисления, образования окалины и др. Для того чтобы избежать отрицательного воздействия рабочей среды, материал должен обладать не только механическими, но требуемыми физико-химическими свойствами — стойкостью к коррозии, жаростойкостью, хладостойкостью и др.
Температурный диапазон работы современных материалов очень широк, поэтому для обеспечения работоспособности при высокой температуре от материала требуется жаропрочность, а при низкой температуре — хладостойкость.
Технологические требования направлены на обеспечение наименьшей трудоемкости и простоты изготовления деталей и конструкций. Они оцениваются технологичностью материала, определяемой хорошей обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также требуемой прокаливаемостью и отсутствием деформации и коробления при термической обработке. Технологичность материала определяет, в конечном итоге, производительность и качество изготовления деталей.
Экономические требования — материал должен иметь невысокую стоимость и быть доступным. Так, например, стали и сплавы должны содержать минимальное количество дорогостоящих легирующих элементов. При этом их использование обязательно должно быть обосновано соответствующим повышением эксплуатационных свойств деталей.
Что такое прочность и от чего зависит?
Важнейшая механическая черта древесины – это ее прочность. Прочностные характеристики оказывают прямое влияние на то, каким образом и на каком уровне материал может сопротивляться и противостоять нежелательным разрушениям.
Средний (так называемый «промежуточный») класс занимают хвойные породы деревьев. Более высокие показатели характерны, например, для березы – именно поэтому из нее очень часто изготавливают различные опорные и несущие конструкции, а также элементы, для которых важна повышенная износостойкость.
Следует отметить тот факт, что на уровень прочности и упругости влияет уровень влажности. Так, при увлажнении происходят специфические реакции внутри древесины, которые уменьшают ее прочность. При этом данное положение является актуальным только в том случае, если уровень влаги поднимается до 25%. Дальнейшее увлажнение не отличается какими-либо существенными реакциями и не влияет на показатели прочности. Это понимают специалисты.
Для того чтобы сравнить показатели прочности разных пород, необходимо убедиться в том, что показатели их влажности являются идентичными – только в таком случае можно говорить об объективном и беспристрастном результате.
Помимо влажности при измерении прочности также важно обращать внимание на характер и продолжительность нагрузок. Так, например, статические нагрузки отличаются постоянством. Кроме того, для них характерно медленное и постепенное возрастание
С другой стороны, динамические нагрузки являются относительно короткими. Так или иначе, разрушать древесину могут и те, и другие нагрузки
Кроме того, для них характерно медленное и постепенное возрастание. С другой стороны, динамические нагрузки являются относительно короткими. Так или иначе, разрушать древесину могут и те, и другие нагрузки.
Стоит также иметь в виду, что показатели прочности, ее пределы и лимиты различаются в зависимости от конкретного вида деформации.
Растяжение. Если говорить о прочности древесины на растяжение, то данный показатель составляет 1 300 кгс/см2 (причем данный параметр является актуальным для всех сортов). В такой ситуации решающее значение имеет внутренняя структура древесины. Если волокна расположены правильно и структурировано, то прочность увеличивается (и наоборот). Прочность различается в зависимости от того, в каком направлении растягивают древесину – вдоль или поперек. В первом случае показатель довольно велик, а во втором – он в 20 раз меньше и составляет 65 кгс/см2. Именно в связи с такими механическими чертами дерево редко используется при создании изделий, которые работают на поперечное растяжение.
Классы прочности и их обозначения
Нормативными документами по механическим свойствам крепежных изделий введено понятие класс прочности металла и установлена система обозначения. Каждый класс прочности обозначается двумя цифрами, между которыми ставится точка. Первое число означает предел прочности, уменьшенный в 100 раз. Например, класс прочности 5.6 означат, что предел прочности будет 500. Второе число увеличено в 10 раз – это отношение предела текучести к временному сопротивлению, выраженному в процентах (500х0,6=300), т. е. 30 % составляет минимальный предел текучести от предела прочности на растяжение. Все изделия, используемые для крепежа, классифицируются по назначению применения, форме, используемому материалу, классу прочности и покрытию. По назначению использования они бывают:
- Лемешные. Их используются для сельскохозяйственных машин.
- Мебельные. Применяются в строительстве и мебельном производстве.
- Дорожные. Ими крепят металлоконструкции.
- Машиностроительные. Применяют в машиностроительной промышленности и приборостроении.
Механические свойства крепежных изделий зависят от стали, из которой они изготовлены и качества обработки.
Механические свойства металлов и сплавов
К механическим свойствам материалов из металла относятся следующие:
- Прочность. Она заключается в способности материала оказывать сопротивление разрушению под воздействием сил извне. Вид прочности зависит от того, как действуют внешние силы. Ее разделяют на: сжатие, растяжение, кручение, изгиб, ползучесть, усталость.
- Пластичность. Это способность металлов и их сплавов под воздействием нагрузки менять форму, не подвергаясь разрушению, и сохранять ее после окончания воздействия. Пластичность материала из металла определяют при его растяжении. Чем больше происходит удлинение, при одновременном уменьшении сечения, тем пластичнее металл. Материалы, обладающие хорошей пластичностью, прекрасно обрабатываются давлением: ковке, прессованию. Пластичность характеризуют двумя величинами: относительное сужение и удлинение.
- Твердость. Такое качество металла заключается в способности оказывать сопротивление проникновению в него инородного тела, имеющего более значительную твердость, и не получить при этом остаточных деформаций. Износоустойчивость и прочность – это основные характеристики металлов и сплавов, которые тесно связаны с твердостью. Материалы с такими свойствами находят применение для изготовления инструментов, применяемых для обработки металлов: резцы, напильники, сверла, метчики. Нередко по твердости материала определяют его износоустойчивость. Так твердые стали при эксплуатации изнашиваются меньше, чем более мягкие сорта.
- Ударная вязкость. Особенность сплавов и металлов сопротивляться влиянию нагрузок, сопровождающихся ударом. Это одна из важных характеристик материала, из которого изготовлены детали, испытывающие ударную нагрузку, во время работы машины: оси колес, коленчатые валы.
- Усталость. Это состояние металла, который находится под постоянным воздействием нагрузок. Усталость металлического материала происходит постепенно и может закончиться разрушением изделия. Способность металлов оказывать сопротивление разрушению от усталости называют выносливостью. Это свойство находится в зависимости от природы сплава или металла, состояния поверхности, характера обработки, условий работы.
Определение прочности металла
Одно из основных требований, которое предъявляют к металлу, применяемому для производства металлических конструкций и деталей, является прочность. Для ее определения берется образец металла и растягивается на испытательной машине. Эталон становится тоньше, площадь поперечного сечения уменьшается с одновременным увеличением его длины. В определенный момент образец начинает растягиваться лишь в одном месте, образуя «шейку». А через некоторое время происходит разрыв в области самого тонкого места. Так ведут себя исключительно вязкие металлы, хрупкие: твердая сталь и чугун растягиваются незначительно и у них не образуется шейка.
Самые прочные металлы в мире
К высокопрочным металлам можно отнести следующие:
-
Титан. Он обладает такими свойствами:
- высокой удельной прочностью;
- стойкостью к повышенным температурам;
- низкой плотностью;
- стойкостью к коррозии;
- механической и химической выносливостью.
Титан находит применение в медицине, военной промышленности, кораблестроении, авиации.
- Уран. Самый известный и прочный металл в мире, является слабым радиоактивным материалом. Встречается в природе в чистом виде и в соединениях. Он относится к тяжелым металлам, гибкий, ковкий и относительно пластичный. Широко используется в производственных сферах.
- Вольфрам. Расчет прочности металла показывает, что это самый прочный и тугоплавкий металл, не поддающийся химическому воздействию. Хорошо куется, его можно вытянуть в тонкую нить. Используется для нити накаливания.
- Рений. Тугоплавкий, имеет высокую плотность и твердость. Очень прочный, не подвержен перепадам температуры. Находит применение в электронике и технике.
- Осмий. Твердый металл, тугоплавкий, стойкий к механическим повреждениям и агрессивным средам. Применяют в медицине, используют для ракетной техники, электронной аппаратуры.
- Иридий. В природе в свободном виде встречается редко, чаще – в соединениях с осмием. Механической обработке поддается плохо, имеет высокую стойкость к химическим веществам и прочность. Сплавы с металлом: титаном, хромом, вольфрамом, используют для изготовления ювелирных изделий.
- Бериллий. Высокотоксичный металл с относительной плотностью, имеющий светло-серый цвет. Находит применение в черной металлургии, атомной энергетике, лазерной и аэрокосмической технике. Имеет высокую твердость и используется для легирования сплавов.
- Хром. Очень твердый металл с высокой прочностью, бело-голубого цвета, обладает стойкостью к щелочам и кислотам. Прочность металла и сплавов позволяют их использовать для изготовления медицинского и химического оборудования, а также для металлорежущих инструментов.
- Тантал. Металл серебристого цвета, имеет высокую твердость, прочность, обладает тугоплавкостью и стойкостью к коррозии, пластичен, легко обрабатывается. Находит применение при создании ядерных реакторов, в металлургии и химической промышленности.
- Рутений. Принадлежит к металлам платиновой группы. Обладает высокой прочностью, твердостью, тугоплавкостью, химической стойкостью. Из него изготовляют контакты, электроды, острые наконечники.
Прикладное применение
Обеспечение прочности машин, аппаратов и конструкций осуществляется следующим образом. На стадии их проектирования производится расчётная или экспериментальная оценка возможности развития в несущих элементах проектируемых конструкций процессов разрушений различных типов: усталостного, хрупкого, квазистатического, разрушения вследствие ползучести материала, коррозии, износа в процессе эксплуатации и т. п. При этом должны быть рассмотрены все возможные в условиях эксплуатации конструкции, известные на данный момент механизмы разрушения материала, из которого выполнены её несущие элементы. Для вновь создаваемого класса машин или аппаратов указанные механизмы разрушения выявляются на стадии научно-исследовательского цикла проектирования. С каждым из таких механизмов разрушения связывается определённый критерий прочности — та или иная характеристика физического состояния материала элементов машин и аппаратов, определяемая расчётным или экспериментальным путём. Для каждого из критериев прочности материала конструкции экспериментально устанавливаются его предельные значения. По предельным значениям далее определяются допускаемые значения этих критериев. Последние определяются, как правило, путём деления предельных значений критерия прочности на соответствующий коэффициент запаса прочности. Значения коэффициентов запаса прочности назначаются на основе опыта эксплуатации с учётом степени ответственности проектируемой конструкции, расчётного срока её эксплуатации и возможных последствий её разрушения.
Значения коэффициентов запаса прочности для различных механизмов разрушения различны. При расчёте по допускаемым напряжениям они изменяются, как правило, в диапазоне значений от 1,05 (при обеспечении прочности элементов летательных аппаратов, имеющих краткий жизненный цикл и не предназначенных для транспортировки людей) до 6 (при обеспечении прочности тросов, используемых в конструкциях пассажирских лифтов). При расчёте по допускаемому числу циклов нагружения могут использоваться существенно большие значения этих коэффициентов. Расчёт наиболее ответственных и энергонасыщенных конструкций машин и аппаратов регламентируется отраслевыми нормами и стандартами. По мере накопления опыта эксплуатации, развития методов исследования физического состояния конструкций и совершенствования методов обеспечения прочности эти нормы и стандарты периодически пересматриваются.
Разрушения
Хрупкое и вязкое разрушение имеют разные виды разрушенной поверхности. Характер дефектов дает понятие, какого рода разрушение имеет место. При хрупком разрушении поверхность надломлена. При вязком разрушении поверхность натянута (вяжет разрушение).
Вязкость разрушения — это относительное повышение растягивающих напряжений в устье трещины при переходе её от стабильной к нестабильной стадии роста.
Вязкость разрушения тесно связана с показателями прочности материала. Увеличение прочности сопровождается снижением пластичности и вязкости разрушения. Это объясняется тем, что у высокопрочных материалов мала энергия, поглощаемая при разрушении, уровень которой определяется величиной пластической деформации у вершины трещины. Для высокопрочных материалов эффект увеличения прочности существенно перекрывается снижением пластичности, в результате чего вязкость разрушения уменьшается. Материалы средней и низкой прочности при комнатной температуре обычно имеют более высокие значения, чем высокопрочные. С понижением температуры прочность растет и при определённых условиях поведение материала средней и низкой прочности становится таким же, как у высокопрочного материала при комнатной температуре. При низких температурах испытание вязкости разрушения можно проводить на образцах меньших размеров.
Виды деформации
Деформация – это видоизменение конфигурации твердого тела под воздействием прилагаемых к нему нагрузок (внешних сил). Деформации, после которых материал возвращается в прежнюю форму и сохраняет первоначальные размеры, считают упругими, в противном случае (форма изменилась, материал удлинился) – пластическими или остаточными. Существует несколько видов деформации:
- Сжатие. Уменьшается объем тела в результате действия на него сдавливающих сил. Такую деформацию испытывают фундаменты котлов и машин.
- Растяжение. Увеличивается длина тела, когда к его концам прилагаются силы, направление которых совпадает с его осью. Растяжению подвергаются тросы, приводные ремни.
- Сдвиг или срез. В этом случае силы направлены навстречу друг другу и при определенных условиях наступает срез. Примером служат заклепки и болты стяжки.
- Кручение. Пара сил, противоположно направленных, действует на закрепленное одним концом тело (валы двигателей и станков).
- Изгиб. Изменение кривизны тела при воздействии внешних сил. Такое действие характерно для балок, стрел подъемных кранов, железнодорожных рельсов.
Современные методы расчета
Для расчёта напряженно-деформируемого состояния конструкции и определения её прочности применяются современные наукоемкие технологии — системы компьютерного инженерного анализа, основанные на применении сеточных методов решения задач математической физики. В настоящее время одним из наиболее эффективных и универсальных методов этого класса является метод конечных элементов (МКЭ).
Наиболее распространённые системы КЭ анализа:
ANSYS — универсальная система КЭ анализа с встроенным пре-/постпроцессором;
NX Nastran — универсальная система КЭ анализа с пре-/постпроцессором FEMAP.
ПК ЛИРА-САПР — система КЭ анализа строительных и машиностроительных конструкций.
Методы определения прочности материалов
На практике применяют два метода определения прочности изделий, с их помощью осуществляется контроль качества как отдельных элементов, так и уже готовых конструкций.
Разрушающий метод
Разрушающий метод — обнаружение предельно допустимых базовых способностей объекта, с применением испытаний на контрольных образцах, до абсолютного разрушения последних. Проводится данное тестирование путем выделения ряда образцов, произведенных по аналогичной технологии и из тех же составляющих компонентов, отбор производится как из готового сооружения или изделия, так и специально изготавливается для тестирования.
Такой метод обладает наибольшей достоверностью и результаты, полученные при его выполнении максимально, подлинно отражают физические свойства материала, но на практике такой анализ требует дополнительных затрат и не всегда имеется возможность его провести.
Неразрушающие методы контроля
Второй способ — это неразрушающие испытания, которые позволяют сохранить рабочие характеристики объектов в неизменном виде, без каких-либо конструктивных изменений, что удобно при инспекции готовых конструкций.
Неразрушающие методики основаны на определении параметров, но только косвенным образом, и проводятся несколькими способами:
Капиллярный
Производится капиллярное проникновение жидкостей или газов в полости исследуемых элементов, затем регистрируются индикаторные следы либо при помощи преобразователя, либо визуально. Таким образом, обнаруживаются поверхностные и сквозные дефекты, однако, это требует больших временных затрат, особенно при тщательных осмотрах поверхности с применением инструментов увеличения (дефектоскопа).
Механическая проверка
Существует несколько вариантов осуществления анализа локальных разрушений объекта — это отрыв со скалыванием, ультразвуковое анализирование, воздействие ударного импульса, упругий отскок, пластическая деформация. Каждый способ проверки обладает как достоинствами, так и ограничениями в применении. Единственный эталонный и для которого в ГОСТе закреплены градуированные зависимости — это метод отрыва со скалыванием, в основном, он применяется для бетона.
Магнитный (магнитопорошковый)
Применяется магнитный индикатор для конструкций, изготовленных из сталей ферромагнитного типа, ограничен формой плоскости намагничивания и не может использоваться для неферромагнитных соединений.
Акустический — резонансный
Определяет колебания упругости образца и частоту продольных или изгибных колебаний, основной плюс такой проверки — это обнаружение дефектов, находящихся еще только в стадии развития (от десятых долей миллиметра), но для качественного проведения такого изучения необходимо дорогостоящее оборудование.
Радиационный
Проводится рентгеновским аппаратом, в основном используется для установления внутренних деформаций соединений, которые получены посредством сварки (непровары, поры, шлаковые включения, трещины).
Тепловой
Делается с помощью тепловизора, выявляются места проходимости тепла, протечек, нарушений изоляционных покрытий, участков нагрева электрических контактов, но на корректность измерений влияют погодные условия, при проведении не всегда удается исключить такие влияния.
Вихретоковый
Используется вихретоковый дефектоскоп, обнаруживает поверхностные повреждения и изъяны, находящиеся на небольших глубинах (глубина -1 – 4 мм), но ограниченно, только в токопроводящих изделиях.
Оценивая все вышеописанные методики, можно сделать вывод, что прочность должна измеряться способом, наиболее подходящим к конкретному исследуемому объекту и при обязательном учете влияния факторов внешней среды, в которой он эксплуатируется.
Важнейшая задача современных производств — это улучшение прочности любых конструкций, она решается включением легирующих элементов в сплавы, радиоактивным облучением, использованием армирующих и композиционных материалов, термической и механической обработкой.
Интересные факты
- Сплавы из титана, удельный вес которых превышает алюминиевые примерно на 70 %, прочнее их в 4 раза, поэтому, по удельной прочности сплавы, содержащие титан, выгоднее использовать для самолетостроения.
- Многие алюминиевые сплавы превышают удельную прочность сталей, содержащих углерод. Сплавы из алюминия имеют высокую пластичность, коррозийную стойкость, прекрасно обрабатываются давлением и резанием.
- У пластмасс удельная прочность выше, чем у металлов. Но из-за недостаточной жесткости, механической прочности, старения, повышенной хрупкости и малой термостойкости ограничены в применении слоистые пластики, текстолиты и гетинаксы, особенно в крупногабаритных конструкциях.
- Установлено, что по выносливости к коррозии и удельной прочности, металлы черные, цветные и многие их сплавы уступают стеклопластикам.
Как определяют свойства металлов?
Для испытания металлов на прочность применяют химические, физические и технологические методы. Твердость определяет, как сопротивляются материалы деформациям. Стойкий металл имеет большую прочность и детали, изготовленные из него, меньше снашиваются. Для определения твердости вдавливают шарик, алмазный конус или пирамидку в металл. Значение твердости устанавливают по диаметру отпечатка или по глубине вдавливания предмета. Более крепкий металл меньше деформируется, и глубина отпечатка будет меньше.
А вот образцы на растяжение испытываются на разрывных машинах с плавно нарастающей при растягивании нагрузкой. Эталон может иметь в сечении круг или квадрат. Для проверки металла противостоять нагрузкам ударного характера проводят испытания на удар. В середине специально изготовленного образца делают надрез и устанавливают его напротив ударного устройства. Разрушение должно происходить там, где слабое место. При испытании металлов на прочность структуру материала исследуют рентгеновскими лучами, ультразвуком и при помощи мощных микроскопов, а также используют травление химическими веществами.