Какими свойствами обладает пробионт

Применение в медицине

Заболевания и клинические синдромы, при которых, согласно отдельным публикациям, может проявляться эффект пробиотиков:

  • по данным Cochrane, пробиотики показали чуть лучший результат чем плацебо, но авторами обзора был отмечен очень низкий уровень качества доказательств
  • антибиотико-ассоциированная диарея.

По мнению Американской гастроэнтерологической ассоциации (AGA), в настоящее время ещё не имеется достаточного количества научных данных в отношении того, какой конкретно пробиотик целесообразно использовать для улучшения определённых состояний или при лечении конкретных болезней.

Согласно позиции AGA, в настоящее время пробиотики наиболее часто используют при лечении следующих заболеваний и состояний:

  • синдром раздражённого кишечника — пробиотические штаммы молочнокислых бактерий Bifidobacterium infantis и Lactobacillus plantarum и грибки Sacchromyces boulardii, а также комбинация пробиотиков могут помочь с налаживанием дефекации;
  • инфекционная диарея, вызванная ротавирусной инфекцией, в том числе у младенцев и маленьких детей — штаммы лактобактерий видов Lactobacillus rhamnosus и Lactobacillus casei;
  • антибиотико-ассоциированная диарея — Saccharomyces boulardii могут предотвратить рецидивы наиболее опасных и наиболее часто встречающихся антибиотико-ассоциированных диарей, вызываемых Clostridium difficile.

В то же время, AGA считает, что в настоящее время отсутствуют доказательства эффективности применения пробиотиков при диарее путешественников, а также, несмотря на возможную полезность при применении пробиотиков для поддержания здоровья полости рта, профилактике и лечении экземы и других заболеваний кожи, урологических заболеваний и влагалища, а также предотвращения аллергии у детей и взрослых, исчерпывающие доказательства полезности пробиотиков отсутствуют, а имеющиеся результаты исследований противоречивы.

Биологические этапы

1. Переход от гаплоидности к диплоидности. Диплоидность смягчает влияние неблагоприятных рецессивных мутаций на жизнеспособность и дает возможность накопить резерв наследственной изменчивости. Этот переход прослеживается и при сопоставлении современных групп растений. Так, у многих водорослей все клетки, кроме зигот, гаплоидны. У мхов преобладает гаплоидное поколение (взрослое растение) при сравнительно слабом развитии диплоидного (органы спороношения). У более высокоорганизованных бурых водорослей наряду с гаплоидными существуют и диплоидные особи. Но уже у папоротников преобладает диплоидное поколение, а у голосеменных (сосны, ели и др.) и покрытосеменных растений (многие деревья, кустарники, травы) самостоятельно существуют только диплоидные особи (см. рис.).Какими свойствами обладает пробионт
2. Утрата связи процесса полового размножения с водой, переход от наружного оплодотворения к внутреннему.
3. Разделение тела на органы (корень, стебель, лист), развитие проводящей системы, усложнение строения тканей.
4. Специализация опыления с помощью насекомых и распространение семян и плодов животными.

История

Гипотеза Опарина-Холдейна прошла долгий путь и не раз критиковалась. История становления гипотезы описана в таблице.

Год

Учёный

Основные события

1924

Советский биолог Александр Иванович Опарин

Основные положения гипотезы Опарина впервые были сформулированы в его книге «Происхождение жизни». Опарин предположил, что биополимеры (высокомолекулярные соединения), растворённые в воде, под действием внешних факторов могут образовывать коацерватные капли или коацерваты. Это собранные вместе органические вещества, которые условно отделяются от внешней среды и начинают поддерживать с ней обмен веществ. Процесс коацервации – расслоения раствора с образованием коацерватов – является предшествующей стадией коагуляции, т.е. слипания мелких частиц. Именно в результате этих процессов из «первичного бульона» (термин Опарина) появились аминокислоты – основа живых организмов

1929

Британский биолог Джон Холдейн

Независимо от Опарина стал развивать подобные взгляды на проблему происхождения жизни. В отличие от Опарина Холдейн предполагал, что вместо коацерватов образовывались макромолекулярные вещества, способные к воспроизводству. Холдейн считал, что первыми такими веществами были не белки, а нуклеиновые кислоты

1953

Американский химик Стэнли Миллер

Будучи студентом, воссоздал искусственную среду для получения аминокислот из неживой материи (химических веществ). Эксперимент Миллера-Юри сымитировал во взаимосвязанных колбах условия Земли. Колбы заполняла смесь газов (аммиак, водород, монооксид углерода), схожая по составу с ранней атмосферой Земли. В одной части системы находилась постоянно кипящая вода, пары которой подвергались электрическим разрядам (имитация молний). Охлаждаясь, пар скапливался в виде конденсата в нижней трубке. После недели непрерывного эксперимента в колбе были обнаружены аминокислоты, сахара, липиды

1979 год

Британский биолог Ричард Докинз

В своей книге «Эгоистичный ген» предположил, что в первичном бульоне образовывались не коацерватные капли, а молекулы, способные к воспроизводству. Достаточно было возникнуть одной молекуле, чтобы её копии заполнили океан

Какими свойствами обладает пробионт

Рис. 3. Эксперимент Миллера.

Эксперимент Миллера неоднократно подвергался критике, и до конца не признаётся практическим подтверждением теории Опарина-Холдейна. Главная проблема – получение из образованной смеси органических веществ, составляющих основу жизни.

Что мы узнали?

Из урока узнали о сути гипотезы происхождения жизни на Земле Опарина-Холдейна. Согласно теории высокомолекулярные вещества (белки, жиры, углеводы) возникли из неживой материи в результате сложных биохимических реакций под воздействием внешней среды. Гипотезу впервые проверил Стэнли Миллер, воссоздав условия Земли до зарождения жизни. В результате были получены аминокислоты и другие сложные вещества. Однако как данные вещества воспроизводились, осталось без подтверждения.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

источник

Существует большое разнообразие гипотез, которые пытаются объяснить происхождение и эволюцию жизни в пребиотической среде. Ниже мы опишем наиболее выдающиеся постулаты, которые обсуждают происхождение протобионтов:

Гипотеза Опарина и Холдейна

Гипотеза о биохимической эволюции была предложена Александром Опариным в 1924 году и Джоном Д. С. Холдейном в 1928 году..

Этот постулат предполагает, что в пребиотической атмосфере не хватало кислорода, но он сильно сокращался из-за большого количества водорода, что приводило к образованию органических соединений благодаря наличию источников энергии..

Согласно этой гипотезе, когда произошло охлаждение Земли, пары вулканических извержений конденсировались, выпадая в осадок в виде сильных и постоянных дождей. Когда вода упала, она вытащила минеральные соли и другие соединения, породив знаменитый первичный суп или питательный бульон.

В этой гипотетической среде могут образовываться крупные молекулярные комплексы, называемые пребиотическими соединениями, которые порождают все более сложные клеточные системы. Опарин назвал эти структуры протобионтами.

По мере того, как протобионты увеличивали свою сложность, они приобретали новые возможности для передачи генетической информации, и Опарин дал название эубионтов этим более продвинутым формам..

Миллер и Юри эксперимент

В 1953 году, после постулатов Опарина, исследователи Стэнли Л. Миллер и Гарольд С. Юри разработали серию экспериментов для проверки образования органических соединений из простых неорганических материалов..

Миллеру и Юри удалось создать экспериментальный дизайн, который моделировал пребиотические среды в условиях, предложенных Опарином, в небольшом масштабе, получая ряд соединений, таких как аминокислоты, жирные кислоты, муравьиная кислота, мочевина и другие..

Свойства и характеристики

Предполагаемые протобионты могут быть сформированы из гидрофобных молекул, которые были организованы в виде бислоя (два слоя) на поверхности капли, напоминая липидные мембраны, присутствующие в современных клетках.

Полупроницаемые мембраны

Поскольку структура является избирательно проницаемой, липосома может набухать или спускаться в зависимости от концентрации растворенных веществ в среде..

То есть, если липосома подвергается воздействию гипотонической среды (концентрация внутри клетки выше), вода входит в структуру, набухая в липосоме. Напротив, если среда гипертоническая (концентрация клетки ниже), вода перемещается во внешнюю среду.

Это свойство не уникально для липосом, оно также может применяться к текущим клеткам организма. Например, если эритроциты подвергаются воздействию гипотонической среды, они могут взорваться.

возбудимость

Липосомы могут накапливать энергию в виде мембранного потенциала, который состоит из напряжения на поверхности. Структура может разряжать напряжение способом, напоминающим процесс, который происходит в нейрональных клетках нервной системы.. 

Липосомы имеют несколько характеристик живых организмов. Однако это не то же самое, что сказать, что липосомы живы..

Этап полимеризации органических мономеров

Значительная часть образующихся мономеров разрушалась под действием высоких температур и многочисленных химических реакций, происходивших в «первичном бульоне». Летучие соединения переходили в атмосферу и практически исчезали из водоемов. Периодическое подсыхание водоемов приводило к многократному увеличению концентрации растворенных органических соединений. На фоне высокой химической активности среды происходили процессы усложнения этих соединений, и они могли вступать в соединения друг с другом (реакции конденсации, полимеризации и т. п.). Жирные кислоты, соединяясь со спиртами, могли образовывать липиды и формировать жировые пленки на поверхности водоемов. Аминокислоты могли соединяться друг с другом, образуя все более сложные пептиды. Могли образовываться и другие типы соединений — нуклеиновые кислоты, полисахариды и др. Первыми нуклеиновыми кислотами, как полагают современные биохимики, были небольшие цепи РНК, так как они, как и олигопептиды, могли синтезироваться в среде с высоким содержанием минеральных компонентов спонтанно, без участия ферментов. Реакции полимеризации могли заметно активироваться при значительном увеличении концентрации раствора (пересыхание водоема) и даже во влажном песке или при полном высыхании водоемов (возможность протекания таких реакций в сухом состоянии была показана американским биохимиком С. Фоксом). Последующие дожди растворяли молекулы, синтезированные на суше, и перемещали их с токами воды в водоемы. Такие процессы могли носить циклический характер, приводя к еще большему усложнению органических полимеров.

РАЗВИТИЕ МНОГОКЛЕТОЧНЫХ. БИЛАТЕРИИ

«Многие люди все больше укреплялись во мнении, что крупная ошибка была сделана прежде всего тогда, когда все спустились с деревьев. А некоторые говорили, будто даже влезание на деревья было ошибкой, и никому не следовало покидать океаны»

Дуглас Адамс. Автостопом по галактике

Около 1,2 миллиарда лет тому назад появились первые многоклеточные. Спустя время они разделились на группы:

  • Губки и пластинчатые. Эти существа дожили до наших дней практически в первозданном виде. У них нет отдельных органов и тканей. Эти организмы отфильтровывают питательные вещества из воды.
  • Кишечнополостные. Эти организмы обеспечены всего одной полостью и примитивной нервной системой.
  • Билатерии. К этой группе можно отнести всех остальных более развитых животных от червей до млекопитающих. Их отличительный признак — двусторонняя симметрия тела. Появление первых билатерий, вероятно, происходило около 620-545 миллионов лет назад.
  • Первичноротые и вторичноротые. Вскоре, после возникновения, билатерии разделяются на первичноротых и вторичноротых. От первых произошли почти все беспозвоночные: черви, моллюски, членистоногие. Вторичные стали прародителями иглокожих (морские ежи и звезды), полухордовых и хордовых, к которым относится в том числе и человек.

Какими свойствами обладает пробионт

Классификация

Согласно рекомендациям ФГБНУ «НИИ питания» к основным пробиотическим микроорганизмам относят лактобациллы (Lactobacillus), бифидобактерии (Bifidobacterium), пропионовокислые бактерии (Propionibacterium), стрептококки вида Streptococcus thermophilus, бактерии рода Lactococcus.

Согласно определению в глоссарии ВОЗ[уточнить], термин пробиотики переводится как Probiotics и означает —

Хотя большинство бактерий, обладающих пробиотическими свойствами, являются представителями семейств Lactobacillus и Bifidobacterium, все чаще в таком качестве стали использоваться и спорообразующие бактерии, в особенности из рода Bacillus.

По некоторым данным зарубежной печати, на данный момент недостаточно научных доказательств, чтобы поддержать какие-либо заявления о предотвращении болезней или улучшении здоровья от приема пробиотиков. Область применения пробиотиков недостаточно регулируется, чем могут пользоваться фармацевтические компании.

Несмотря на противоречивые сведения о терапевтическом эффекте пробиотиков, наиболее сильные доказательства их эффективности связаны с использованием пробиотиков для улучшения функционирования кишечника и стимулирования иммунной системы. Есть и др. направления оздоровительного воздействия на организм. Например, пробиотики рассматриваются как альтернативный вариант терапии и ведения пациентов с печёночной энцефалопатией, имеются данные о влиянии пробиотиков на снижение уровня холестерина, и т. д.

Свойства и характеристики

Предполагаемые протобионты могут быть сформированы из гидрофобных молекул, которые были организованы в виде бислоя (два слоя) на поверхности капли, напоминая липидные мембраны, присутствующие в современных клетках.

Полупроницаемые мембраны

Поскольку структура является избирательно проницаемой, липосома может набухать или спускаться в зависимости от концентрации растворенных веществ в среде..

То есть, если липосома подвергается воздействию гипотонической среды (концентрация внутри клетки выше), вода входит в структуру, набухая в липосоме. Напротив, если среда гипертоническая (концентрация клетки ниже), вода перемещается во внешнюю среду.

Это свойство не уникально для липосом, оно также может применяться к текущим клеткам организма. Например, если эритроциты подвергаются воздействию гипотонической среды, они могут взорваться.

возбудимость

Липосомы могут накапливать энергию в виде мембранного потенциала, который состоит из напряжения на поверхности. Структура может разряжать напряжение способом, напоминающим процесс, который происходит в нейрональных клетках нервной системы.. 

Липосомы имеют несколько характеристик живых организмов. Однако это не то же самое, что сказать, что липосомы живы..

Возникновение и эволюция эукариот и многоклеточных организмов

Амебоподобные гетеротрофные клетки могли поглощать другие небольшие клетки. Некоторые из «съеденных» клеток не гибли и оказывались способны функционировать и внутри клетки-хозяина. В отдельных случаях такой комплекс оказался биологически взаимовыгодным и привел к устойчивому симбиозу клеток.

❖ Симбиотическая теория появления (около 1,5 млрд, лет назад) и эволюции эукариотических клеток (симбиогенез):
■ одна группа анаэробных гетеротрофных пробионтов вступила в симбиоз с аэробными гетеротрофными первичными бактериями, дав начало эукариотическим клеткам, имеющим в качестве энергетических органоидов митохондрии;
■ другая группа анаэробных гетеротрофных пробионтов объединилась не только с аэробными гетеротрофными бактериями, но и с первичными фотосинтезирующими цианобактериями, дав начало эукариотическим клеткам, имеющим в качестве энергетических органоидов хлоропласты и митохондрии. Клетки-симбионты с митохондриями в дальнейшем дали начало царствам животных и грибов; с хлоропластами — царству растений.

Усложнение эукариот привело к появлению клеток с полярными свойствами, способными к взаимному притяжению и слиянию, т.е. к половому процессу, диплоидности (следствие этого — мейоз), доминантности и рецессивности, комбинативной изменчивости и т.д.

❖ Гипотезы появления многоклеточных организмов (2,6 млрд, лет назад):
■ гипотеза гастреи (Э. Геккель, 1874 г.): предковыми формами многоклеточных были одноклеточные организмы, образовавшие однослойную сферическую колонию. Позднее за счет впя-чивания (инвагинации) части стенки колонии образовался гипотетический двуслойный организм — гастрея, подобный стадии гаструлы эмбрионального развития животных; при этом клетки наружного слоя выполняли покровную и двигательную функции, клетки внутреннего слоя — функции питания и размножения;

■ гипотеза фагоцителлы (И.И. Мечников, 1886 г.; эта гипотеза лежит в основе современных представлений о возникновении многоклеточное): многоклеточные произошли от одноклеточных колониальных жгутиковых организмов. Способом питания таких колоний был фагоцитоз. Клетки, захватившие добычу, перемещались внутрь колонии, и из них образовывалась ткань — энтодерма, выполняющая пищеварительную функцию. Клетки, оставшиеся снаружи, выполняли функции восприятия внешних раздражений, защиты и движения; из них впоследствии развилась покровная ткань — эктодерма. Часть клеток специализировалась на выполнении функции размножения. Постепенно колония превратилась в примитивный, но целостный многоклеточный организм — фагоцителлу. Подтверждением этой гипотезы служит ныне существующий, промежуточный между одной и многоклеточными, организм трихоплакс, строение которого соответствует строению фагоцителлы.

источник

Существует большое разнообразие гипотез, которые пытаются объяснить происхождение и эволюцию жизни в пребиотической среде. Ниже мы опишем наиболее выдающиеся постулаты, которые обсуждают происхождение протобионтов:

Гипотеза Опарина и Холдейна

Гипотеза о биохимической эволюции была предложена Александром Опариным в 1924 году и Джоном Д. С. Холдейном в 1928 году..

Этот постулат предполагает, что в пребиотической атмосфере не хватало кислорода, но он сильно сокращался из-за большого количества водорода, что приводило к образованию органических соединений благодаря наличию источников энергии..

Согласно этой гипотезе, когда произошло охлаждение Земли, пары вулканических извержений конденсировались, выпадая в осадок в виде сильных и постоянных дождей. Когда вода упала, она вытащила минеральные соли и другие соединения, породив знаменитый первичный суп или питательный бульон.

В этой гипотетической среде могут образовываться крупные молекулярные комплексы, называемые пребиотическими соединениями, которые порождают все более сложные клеточные системы. Опарин назвал эти структуры протобионтами.

По мере того, как протобионты увеличивали свою сложность, они приобретали новые возможности для передачи генетической информации, и Опарин дал название эубионтов этим более продвинутым формам..

Миллер и Юри эксперимент

В 1953 году, после постулатов Опарина, исследователи Стэнли Л. Миллер и Гарольд С. Юри разработали серию экспериментов для проверки образования органических соединений из простых неорганических материалов..

Миллеру и Юри удалось создать экспериментальный дизайн, который моделировал пребиотические среды в условиях, предложенных Опарином, в небольшом масштабе, получая ряд соединений, таких как аминокислоты, жирные кислоты, муравьиная кислота, мочевина и другие..

Положения

Чтобы рассказать кратко о гипотезе возникновения жизни, следует выделить три этапа становления жизни по Опарину:

  • возникновение органических соединений;
  • образование полимерных соединений (белков, липидов, полисахаридов);
  • появление примитивных организмов, способных к воспроизводству.

Какими свойствами обладает пробионт

Рис. 1. Схема эволюции по Опарину.

Биогенной, т.е. биологической эволюции, предшествовала химическая эволюция, в результате которой образовывались сложные вещества. На их образование влияла бескислородная атмосфера Земли, ультрафиолет, разряды молний.

Из органических веществ возникали биополимеры, которые складывались в примитивные формы жизни (пробионты), постепенно отделяясь мембраной от внешней среды. Появление в пробионтах нуклеиновых кислот способствовало передаче наследственной информации и усложнению организации. В результате длительного естественного отбора остались только те организмы, которые были способны к успешному воспроизводству.

Какими свойствами обладает пробионт

Рис. 2. Пробионты.

Пробионты или проклетки до сих пор не были получены экспериментальным путём. Поэтому до конца непонятно, как примитивное скопление биополимеров смогло перейти от неживого пребывания в бульоне к воспроизводству, питанию и дыханию.

Характерные особенности крыши для дома бруса

Кровлю в деревянном доме можно сделать разную. Зависит от желаний жильцов и климатических особенностей места застройки. В домах из бруса крыши бывают теплые и холодные. Так дома, оснащают утеплителем или не используют такой материал в сборке дома. По форме же они делятся на:

  1. Двускатная – классическая треугольная форма, простая установка.
  2. Двускатная ломанная — ее скаты вверху конструкции с малым уклоном, а с середины меняют его на более крутой. Подходит для проектов с мансардой.
  3. Трехскатная – конструкция усложнена дополнительными стропильными элементами. Ее часто устанавливают в России.

Решение должно опираться на условия климата в районе под строительство. Так, например:

  • 40-45 градусов делают в регионах со значительным количеством осадков. В зимнее время снег с крыши под таким уклоном прекрасно уйдет.
  • 20-25 градусов используют, когда местность ветреная.

Выбирая проект дома из профилированного бруса, не рекомендуется пренебрегать правилами использования соответствующих уклонов скатов в угоду эстетическим пожеланиям. Надежность здания важнее.

Какими свойствами обладает пробионт
Проект дома с двускатной ломанной крышейИсточник el.decorexpro.com

Генетический материал протобионтов

Мир РНК

Согласно гипотезе нынешних молекулярных биологов, протобионты несли молекулы РНК вместо молекул ДНК, что позволило им копировать и хранить информацию.

Помимо того, что РНК играет фундаментальную роль в синтезе белка, она также может вести себя как фермент и проводить реакции катализа. Из-за этой характеристики РНК является указанным кандидатом на роль первого генетического материала у протобионтов.

Молекулы РНК, способные проводить катализ, называются рибозимами и могут делать копии с комплементарными последовательностями коротких участков РНК и опосредовать процесс сплайсинг, устранение разделов последовательности.

Протобионт, у которого внутри находилась каталитическая молекула РНК, отличался от аналогов, у которых не было этой молекулы..

В случае, если протобионты могут расти, делиться и передавать РНК своим потомкам, дарвиновские процессы естественного отбора могут быть применены к этой системе, и протобионты с молекулами РНК увеличат их частоту в популяции..

Хотя появление этого протобиона может быть очень маловероятным, необходимо помнить, что в водоемах первобытной земли могли существовать миллионы протобионтов..

Внешний вид ДНК

ДНК является гораздо более стабильной двухцепочечной молекулой по сравнению с молекулой РНК, которая является хрупкой и неточно реплицируется. Это свойство точности с точки зрения репликации стало более необходимым, поскольку геномы протобионтов увеличились в размерах.

В Принстонском университете исследователь Фриман Дайсон предлагает, чтобы молекулы ДНК могли быть короткими структурами, помогая в их репликации случайными аминокислотными полимерами с каталитическими свойствами.

Это раннее размножение может происходить внутри протобионтов, которые хранили большое количество органических мономеров..

После появления молекулы ДНК РНК может начать играть свою нынешнюю роль в качестве посредников трансляции, создавая тем самым «мир ДНК»..

Корень противоречий

Нестандартность мышления индивидов, разное восприятие происходящих событий, разные жизненные цели, приоритеты и психологические особенности отдельно взятой личности. Все эти факторы являются причинами противоречий. Чаще всего люди незатруднительно приходят к консенсусу или компромиссу, в идеале — почерпывая пользу для себя из аргументов оппонента, потому что часто такие ситуации позволяют взглянуть на предмет спора под другим ракурсом и открыть для себя что-то новое, о чем никогда не задумывался ранее.

Что это такое?

Давайте определимся с терминами и предназначением. Если разобраться в смысле слова причелина, здесь явно прослеживается слово «чело», что на древнеславянском языке обозначает лицо/лоб. Это определяет и назначение элемента. По сути, причелину можно считать кровельным молдингом, который защищает торцевые части брёвен от влаги, и других природных явлений.

Формирование коацерватов

Следующим этапом в происхождении жизни стало образовывание коацерватов, то есть больших скоплений сложных органических полимеров. Причины и механизмы этого явления во многом еще не ясны. Коацерваты этого периода представляли еще механическую смесь органических соединений, лишенную каких-либо признаков жизни. В какой-то период времени между молекулами РНК и пептидами возникли связи, напоминающие реакции матричного синтеза белка. Однако до сих пор непонятно, каким образом РНК стала кодировать синтез пептидов. Позже появились молекулы ДНК, которые в силу наличия двух спиралей и возможности к более точному (по сравнению с РНК) самокопированию (репликации) стали главными носителями информации о синтезе пептидов, передавая эту информацию на РНК. Такие системы (коацерваты) уже напоминали живые организмы, однако еще не являлись таковыми, так как не имели упорядоченной внутренней структуры, присущей живым организмам, и не были способны размножаться. Ведь определенные реакции синтеза пептидов могут происходить и в неклеточных гомогенатах.

Генетический материал протобионтов

Мир РНК

Согласно гипотезе нынешних молекулярных биологов, протобионты несли молекулы РНК вместо молекул ДНК, что позволило им копировать и хранить информацию.

Помимо того, что РНК играет фундаментальную роль в синтезе белка, она также может вести себя как фермент и проводить реакции катализа. Из-за этой характеристики РНК является указанным кандидатом на роль первого генетического материала у протобионтов.

Молекулы РНК, способные проводить катализ, называются рибозимами и могут делать копии с комплементарными последовательностями коротких участков РНК и опосредовать процесс сплайсинг, устранение разделов последовательности.

Протобионт, у которого внутри находилась каталитическая молекула РНК, отличался от аналогов, у которых не было этой молекулы..

В случае, если протобионты могут расти, делиться и передавать РНК своим потомкам, дарвиновские процессы естественного отбора могут быть применены к этой системе, и протобионты с молекулами РНК увеличат их частоту в популяции..

Хотя появление этого протобиона может быть очень маловероятным, необходимо помнить, что в водоемах первобытной земли могли существовать миллионы протобионтов..

Внешний вид ДНК

ДНК является гораздо более стабильной двухцепочечной молекулой по сравнению с молекулой РНК, которая является хрупкой и неточно реплицируется. Это свойство точности с точки зрения репликации стало более необходимым, поскольку геномы протобионтов увеличились в размерах.

В Принстонском университете исследователь Фриман Дайсон предлагает, чтобы молекулы ДНК могли быть короткими структурами, помогая в их репликации случайными аминокислотными полимерами с каталитическими свойствами.

Это раннее размножение может происходить внутри протобионтов, которые хранили большое количество органических мономеров..

После появления молекулы ДНК РНК может начать играть свою нынешнюю роль в качестве посредников трансляции, создавая тем самым «мир ДНК»..

источник

Существует большое разнообразие гипотез, которые пытаются объяснить происхождение и эволюцию жизни в пребиотической среде. Ниже мы опишем наиболее выдающиеся постулаты, которые обсуждают происхождение протобионтов:

Гипотеза Опарина и Холдейна

Гипотеза о биохимической эволюции была предложена Александром Опариным в 1924 году и Джоном Д. С. Холдейном в 1928 году..

Этот постулат предполагает, что в пребиотической атмосфере не хватало кислорода, но он сильно сокращался из-за большого количества водорода, что приводило к образованию органических соединений благодаря наличию источников энергии..

Согласно этой гипотезе, когда произошло охлаждение Земли, пары вулканических извержений конденсировались, выпадая в осадок в виде сильных и постоянных дождей. Когда вода упала, она вытащила минеральные соли и другие соединения, породив знаменитый первичный суп или питательный бульон.

В этой гипотетической среде могут образовываться крупные молекулярные комплексы, называемые пребиотическими соединениями, которые порождают все более сложные клеточные системы. Опарин назвал эти структуры протобионтами.

По мере того, как протобионты увеличивали свою сложность, они приобретали новые возможности для передачи генетической информации, и Опарин дал название эубионтов этим более продвинутым формам..

Миллер и Юри эксперимент

В 1953 году, после постулатов Опарина, исследователи Стэнли Л. Миллер и Гарольд С. Юри разработали серию экспериментов для проверки образования органических соединений из простых неорганических материалов..

Миллеру и Юри удалось создать экспериментальный дизайн, который моделировал пребиотические среды в условиях, предложенных Опарином, в небольшом масштабе, получая ряд соединений, таких как аминокислоты, жирные кислоты, муравьиная кислота, мочевина и другие..

Появление биологических мембран

Упорядоченные биологические структуры невозможны без биологических мембран. Поэтому следующим этапом в образовании жизни стало формирование именно этих структур, изолирующих и защищающих коацерваты от окружающей среды, превращающих их в автономные образования. Мембраны могли образоваться из липидных пленок, появлявшихся на поверхности водоемов. К молекулам липидов могли присоединяться пептиды, приносимые дождевыми потоками в водоемы или образовавшиеся в этих водоемах. При волнении водоемов или выпадении на их поверхность осадков могли возникать пузырьки, окруженные мембраноподобными соединениями. Для возникновения и эволюции жизни важны были те пузырьки, которые окружали коацерваты с белково-нуклеидными комплексами. Но и такие образования еще не были живыми организмами.

Возникновение пробионтов — первых самовоспроизводящихся организмов

В живые организмы могли превратиться только те коацерваты, которые были способны к саморегуляции и самовоспроизводству. Каким образом эти способности возникли — также пока неясно. Биологические мембраны обеспечили автономность и защиту коацерватам, что способствовало появлению существенной упорядоченности биохимических реакций, протекающих в этих телах. Следующим шагом стало появление самовоспроизводства, когда нуклеиновые кислоты (ДНК и/или РНК) стали не только обеспечивать синтез пептидов, но и с его помощью регулировать процессы самовоспроизводства и обмена веществ. Так возникла клеточная структура, обладающая обменом веществ и способностью к самовоспроизводству. Именно эти формы и смогли сохраниться в процессе естественного отбора. Так коацерваты превратились в первые живые организмы — пробионты.

Закончился этап химической эволюции, и наступил этап биологической эволюции уже живой материи. Произошло это 3,5-3,8 млрд. лет назад. Появление живой клетки — это первый крупнейший ароморфоз в эволюции органического мира.

Первые живые организмы были близки по строению к прокариотам, не имели еще прочной клеточной стенки и каких-то внутриклеточных структур (были покрыты биологической мембраной, внутренние изгибы которой выполняли функции клеточных структур). Возможно, первые пробионты имели наследственный материал, представленный РНК, а геномы с ДНК появились позже в процессе эволюции. Существует мнение, что дальнейшая эволюция жизни пошла от общего предка, от которого произошли первые прокариоты. Именно это обеспечило большое сходство строения всех прокариот, а впоследствии и эукариот.

Невозможность самозарождения жизни в современных условиях

Часто задают вопрос: почему не происходит самозарождение живых существ в настоящее время? Ведь если живые организмы не появляются сейчас, то на каком основании мы можем создавать гипотезы о происхождении жизни в далеком прошлом? Где критерий вероятности этой гипотезы? Ответы на данные вопросы могут быть следующими: 1) приведенная выше гипотеза биопоэза является во многом лишь логическим построением, она еще не доказана, содержит много противоречий и неясных моментов (хотя имеется очень много данных и палеонтологических, и экспериментальных, позволяющих предположить именно такое развитие биопоэза); 2) данная гипотеза при всей своей незавершенности тем не менее пытается объяснить возникновение жизни, исходя из конкретных земных условий, именно в этом и состоит ее ценность; 3) самообразование новых живых существ на современном этапе развития жизни невозможно по следующим причинам: а) органические соединения долгое время должны существовать в виде скоплений, постепенно усложняясь и преобразуясь; в условиях окислительной атмосферы современной Земли это невозможно, они будут быстро разрушены; б) в современных условиях существует множество организмов, способных очень быстро использовать даже незначительные скопления органических веществ для своего питания.

Эволюция пробионтов

Пробионты были анаэробными гетеротрофными прокариотами. Пищу и энергию для жизнедеятельности они получали из органических веществ абиогенного происхождения за счет анаэробного расщепления (брожения, или ферментации). Истощение запасов органических веществ усилило конкуренцию и ускорило эволюцию пробионтов.

В результате произошла дифференциация пробионтов. Одна их часть (примитивные предки современных бактерий), оставаясь анаэробными гетеротрофами, претерпела прогрессивное усложнение. Другие пробионты, содержащие определенные пигменты, приобрели возможность образовывать органические вещества путем фотосинтеза (сначала бескислородного, а затем — предки цианобактерий — с выделением кислорода). Т.е. возникли анаэробные автотрофные прокариоты, которые постепенно насыщали свободным кислородом атмосферу Земли.

С появлением кислорода возникли аэробные гетеротрофные прокариоты, существующие за счет более эффективного аэробного окисления органических веществ, образовавшихся в результате фотосинтеза.