Значение слова «площадь»

В словаре Д.Н. Ушакова

ПЛО́ЩАДЬ, площади, пред. о площади и (·устар.) на площади, мн. и площадей, ·жен. (·книж. ).1. Часть плоскости, ограниченная ломаной или кривой линией (геом.). Площадь прямоугольника. Площадь криволинейной фигуры.2. только ед. Пространство, поверхность, естественно ограниченная или специально выделенная, отделенная для какой-нибудь цели. Количество эксплоатируемой, полезной площади.| Помещение, обычно измеряемое в квадратных метрах поверхности пола. Жилая площадь. Площадь дома.| Пространство земли, занимаемое чем-нибудь. Площадь посева. Культурная площадь (см. культурный» title=’что такое культурный, значение слова культурный в словаре Ушакова’>культурный). Расширение посевной площади. Лесная площадь.3. Большое, ровное и незаостренное место в пределах города или села. Базарная площадь. Красная площадь в Москве. «Внизу народ на площади кипел.» Пушкин. «Там Минин и Пожарский торжественно стоят на площади.» Некрасов.

Общий метод определения площади

Площадь плоской фигуры

На практике чаще всего требуется определить площадь ограниченной фигуры с кусочно-гладкой границей. Математический анализ предлагает универсальный метод решения подобных задач.

Декартовы координаты

Определённый интеграл как площадь фигуры

Площадь между графиками двух функций равна разности интегралов от этих функций в одинаковых пределах интегрирования

Площадь, заключённая между графиком непрерывной функции на интервале a,b{\displaystyle } и горизонтальной осью, может быть вычислена как определённый интеграл от этой функции:

S=∫abf(x)dx{\displaystyle S=\int \limits _{a}^{b}f(x)\,dx}

Площадь, заключённая между графиками двух непрерывных функций f(x),g(x){\displaystyle f(x),\,g(x)} на интервале a,b{\displaystyle } находится как разность определённых интегралов от этих функций:

S=∫ab|f(x)−g(x)|dx{\displaystyle S=\int \limits _{a}^{b}\left|f(x)-g(x)\right|\,dx}

Полярные координаты

В полярных координатах: площадь, ограниченная графиком функции r=r(θ){\displaystyle r=r(\theta )} и лучами θ=θ1,θ=θ2,θ1<θ2{\displaystyle \theta =\theta _{1},\theta =\theta _{2},\theta _{1}<\theta _{2}} вычисляется по формуле:

S=12∫θ1θ2r2(θ)dθ{\displaystyle S={1 \over 2}\int \limits _{\theta _{1}}^{\theta _{2}}r^{2}(\theta )\,d\theta }.

Площадь поверхности

Для определения площади кусочно гладкой поверхности в трёхмерном пространстве используют ортогональные проекции к касательным плоскостям в каждой точке, после чего выполняют предельный переход. В результате, площадь искривлённой поверхности A, заданной вектор-функцией r=r(u,v),{\displaystyle \mathbf {r} =\mathbf {r} (u,v),}, даётся двойным интегралом:

S=∬A|∂r∂u×∂r∂v|dudv.{\displaystyle S=\iint \limits _{A}\left|{\frac {\partial \mathbf {r} }{\partial u}}\times {\frac {\partial \mathbf {r} }{\partial v}}\right|\,du\,dv.}

То же в координатах:

S=∬A(D(x,y)D(u,v))2+(D(y,z)D(u,v))2+(D(z,x)D(u,v))2dudv{\displaystyle S=\iint \limits _{A}{\sqrt {\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}+\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}}}\;\mathrm {d} \,u\,\mathrm {d} \,v}

Здесь D(y,z)D(u,v)=|yu′yv′zu′zv′|,D(z,x)D(u,v)=|zu′zv′xu′xv′|,D(x,y)D(u,v)=|xu′xv′yu′yv′|{\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y’_{u}&y’_{v}\\z’_{u}&z’_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z’_{u}&z’_{v}\\x’_{u}&x’_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x’_{u}&x’_{v}\\y’_{u}&y’_{v}\end{vmatrix}}}.

Теория площадей занимается изучением обобщений, связанных с распространением определения k-мерной площади с кусочно-гладкого погружения на более общие пространства. Для кусочно-гладкого погружения f площадь определяют способом, аналогичным указанному выше, при этом у площади сохраняются такие свойства как положительность, аддитивность, нормированность, а также ряд новых.

В словаре Даля

ж. ровное место. Европейская Россия одна площадь, особенно
южная. Гора будто срезана, вершина площадью. Лес на площади растет, на
плоскости, а не в горах. Площадь в городах или селеньях, незастроенный
простор, шире улиц, майдан. Площадь торговая, базарная, сенная,
дровяная, конная. Памятник Петру на Исакиевской площади. Площадь в лесу,
чисть, прогалина. Площадь в горах, плоскогорье. Площадь в острове,
лесная, охотнич. сплошной лес. | Площадь, орл. сплошной кустарник или
заросли, кустовой сплошняк. Дьяк у места, что кот у теста; а как дьяк на
площади, так Господи пощади! о торговой казни. Доходы с площади, с лавок
и с весов, а встарь и с возов, и с товаров. Топтать площадь, шататься
без дела. | Геометр. ограниченная чертами плоскость или поверхность.
Площадь треугольника равна основанью, помноженному на половину высоты.
Площадка, площадочка, умалит. Собачья площадка, в Москве, где торговали
собаками. | Возвышенное, плоское и ровное место. Лобное место, лобная
площадка, в Москве, откуда читались народу грамоты и указы. Площадка на
лестнице, у подъезда. | Стар. плошка, латка, ендова. | Арх. плашка,
огниво, кресало, кресево; | пенз. название красной вишни, в отличие от
черной, называемой владимирскою (Наумов). Площадной, площадковый,
площадочный, ко площади, площадке относящ. Площадные лавочки, торгаши.
Площадной шут, балаганный, грубый, пошлый. | Вообще, все пошлое,
непристойное, что говорится площадными торговками, в черном народе.
Площадная брань. Площадные шутки, остроты. Площадная речь, что
виноватого надо сечь. Площадной дьячок, подьячий, — писчик, стар.
приказные служители, стоявшие на площадях, для писанья челобитень,
частных сделок, писем; народный писец. Речи ее почти всегда
площадноваты. Площадчатый, из площадок составленный. Площаддник,
площадница, площадной, пошлый и грубый человек. Площить что, пластить,
плющить, раскатывать в лист или в тесьму. Плющить бить. Площиться,
страдат. Площенье ср. действ. по глаг. Площильный стан, или площильня ж.
Площильщик и волочильщик, кто тянет проволоку и площит ее. Площица ж.
плоскуша, тельная вошь, которая впивается.

Величины

Площадь, длина, ширина, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения — это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

В словаре Энциклопедии

одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких примыкающих друг к другу прямоугольников) равна сумме площади составляющих ее прямоугольников. Площадь любой плоской фигуры определяется как общий предел вписанных в нее или описанных около нее ступенчатых фигур. Для неплоских фигур (поверхностей) площадь определяют путем приближения их фигурами, состоящими из частей плоскости.—открытое, обрамленное какими-либо зданиями или зелеными насаждениями пространство, входящее в систему других городских пространств; нередко играет важную градостроительную роль. Среди наиболее известных площадей — Красная пл. в Москве, Дворцовая пл. в Санкт-Петербурге, пл. де Голля (б. пл. Звезды) в Париже.

Единицы измерения площади

В одном квадратном сантиметре сто квадратных миллиметров

Метрические единицы

  • Квадратный метр, производная единица Международной системы единиц (СИ); 1 м² = 1 са (сантиар);
  • Квадратный километр, 1 км² = 1 000 000 м²;
  • Гектар, 1 га = 10 000 м²;
  • Ар (сотка), 1 а = 100 м²:
  • Квадратный дециметр, 100 дм² = 1 м²;
  • Квадратный сантиметр, 10 000 см² = 1 м²;
  • Квадратный миллиметр, 1 000 000 мм² = 1 м²;
  • Барн, 1 б = 10−28 м².

Русские устаревшие

  • Квадратная верста = 1,13806 км²
  • Десятина = 10925,4 м²
  • Копна = 0,1 десятины — сенные покосы мерили копнами
  • Квадратная сажень = 4,55224 м²

Мерами земли при налоговых расчётах были выть, соха, обжа, размеры которых зависели от качества земли и социального положения владельца. Существовали и различные местные меры земли: коробья, верёвка, жеребья и др.

Другие

  • Акр
  • Рай = 1600 м² (40 м × 40 м).
  • Квадратный парсек
  • Планковская площадь (SP,ℓP2{\displaystyle S_{P},{\ell }_{P}^{2}}) ≈ 2,612099 · 10−70 м2

Основные способы

Существует три основных способа определения площадей:

  • аналитический;
  • графический;
  • механический.

определение площади

Для графического способа используются данные измерений на плане и карте.

Такой способ чаще всего используется при отсутствии информации полевых измерений.

При механическом способе площадь определяется по плану с помощью специального устройства — планиметра.

Иногда используется комбинированный способ определения площади. Например, общая площадь участка определяется по координатам характерных точек аналитическим способом, а площади внутренних участков определяются по плану с помощью графического или механического методов.

Эти три метода имеют различные показатели точности.

Наиболее точным является аналитический метод. На точность этого метода влияют только погрешности полевых измерений.

Точности других методов, использующих топографическую информацию с планов, зависят еще и от погрешностей приборов, качества плана, масштаба, деформации бумаги.

Аналитический способ

Аналитический способ позволяет по координатам характерных точек границ участка определить его площадь. При этом используются формулы аналитической геометрии.

В соответствии с ними площадь многоугольника S может быть определена по формуле:

S= 0,5*∑(Xi*(Yi+1-Yi-1), где:

  • Xi и Yi — координаты i-той характерной точки участка, имеющего вид многоугольника;
  • i — порядковый номер характерной точки ЗУ. Этот параметр меняется от 1 до n;
  • n — число характерных точек.

Если участок имеет четырехугольную форму, то, в общем случае, для него расчет площади производится по приведенной выше формуле с учетом того, что n=4.

Если участок имеет форму трапеции и известны его стороны, то площадь такого участка можно определить по формуле:

Sт=0,5*(a+b)*h, где:

  • a и b — основания фигуры;
  • h – высота трапеции.

При расчете четырехугольника неправильной формы, когда известны размеры его сторон, вначале определяют величину полупериметра p:

р=0,5(а+B+c+d), где:

a,b,c,d — величины сторон.

Тогда площадь участка Sу будет равна:

Sy=√(p-a)(p-b)(p-c)(p-d).

В некоторых случаях, когда имеется много точек поворота, аналитический расчет площади участка производится с использованием данных об углах азимута.

При этом по контуру границ участка производится замер азимута каждой характерной точки. Также определяется расстояние от одной характерной точки до следующей за ней точки. Вся эта информация в дальнейшем вводится в ЭВМ, которая по специальной программе производит расчет площади ЗУ.

Графический метод

При расчете площади участка графическим методом чаще всего изображенный на плане участок сложной формы делят на участки элементарного вида (треугольники, прямоугольники, трапеции), затем вычисляют и суммируют площади этих фигур.

Точность графического метода зависит от точности графического измерения на плане. Известно, что точность измерения с помощью циркуля постоянна и равна 0,1 мм. Поэтому относительная ошибка при измерении коротких линий больше, чем при измерении длинных линий. В связи с этим желательно, чтобы простые фигуры были больших размеров и с близкими по размерам основаниями и высотами.

Такой метод удобен в случае, когда имеется небольшое количество характерных точек. В противном случае целесообразнее определять площадь участка по координатам точек, измеренных на плане.

В некоторых случаях участки имеют криволинейную форму, которую трудно аппроксимировать простыми фигурами. В таких случаях могут использоваться палетки.

Палетка представляет собой прозрачный лист, на который нанесены деления. Этот лист накладывается на план участка. Сосчитав количество делений, входящих в контур участка, и определив площадь одного деления с учетом масштаба, можно оценить площадь участка.

Недостаток такого графического метода состоит в том, что количество неполных квадратов приходится оценивать на глаз. В результате этого ухудшается точность данного метода.

Механический способ

Механический способ используется в тех случаях, когда по плану необходимо оценить площадь большого участка со сложными границами. Для осуществления этого метода используются планиметры.

Планиметр представляет собой прибор, который позволяет определить площадь плоской фигуры путем обвода ее контура. Он состоит из двух рычагов и каретки со счетным механизмом. На полюсном рычаге имеется игла, которая втыкается в план и является полюсом. Вокруг полюса по контуру участка движется обводной шпиль. Точность метода зависит от размеров участка и свойств плана.

Общая формула

S = 0,5 * a * b⋅sin(α) , где a, b — стороны, α — угол между ними.

Значение слова «площадь»

S = 0,5 * a * h, где a — основание, h — высота.

Значение слова «площадь»

S = (a * b * c) : (4 * R), где a, b, c — стороны, R — радиус описанной окружности.

Значение слова «площадь»

4. Площадь треугольника через вписанную окружность и стороны.

S = r * (a + b + c) : 2, где a, b, c — стороны, r — радиус вписанной окружности.

Значение слова «площадь»

Если учитывать, что (a + b + c) : 2 — это способ поиска полупериметра. Тогда формулу можно записать следующим образом:

S = r * p, где p — полупериметр.

S = a2 : 2 * (sin(α)⋅sin(β)) : sin(180 — (α + β)), где a — сторона, α и β — прилежащие углы, γ — противолежащий угол.

Значение слова «площадь»

6. Формула Герона для вычисления площади треугольника.

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

S = √ p * (p − a) * (p − b) * (p − c)​, где a, b, c — стороны, p — полупериметр, который можно найти по формуле: p = (a + b + c) : 2

Значение слова «площадь»