Интересные факты о нейтрино
-
В 2011-м году, в эксперименте нейтринных осцилляций ЦЕРНа, было обнаружено, что частицы, пролетевшие сквозь Землю из Швеции в Италию, вероятно, превысили скорость света на 0,00248 %.
Это вызвало серьезный переполох в научном сообществе. Но сенсация быстро была опровергнута самим же ЦЕРНом, когда стало известно, что «плохо вставленный разъем оптического кабеля» привел к неточному подсчету времени полета.
- Ежесекундно сквозь человеческое тело пролетает 1014 нейтрино, и это только те, что излучаются Солнцем.
- Как и большинство нейтринных детекторов, Super-Kamiokande располагается в цинковой шахте под землей, на глубине в 1000 метров. Герметичное помещение лаборатории представляется в виде цилиндра с диаметров 40 м. и высотой 42 м, сконструированное из нержавеющей стали и заполненное очищенной водой – 50 000 тонн. На его стенах располагается 11 тыс. фотоэлектронных умножителей– грибоподобных приборов для повышения чувствительности детектора. Система очень восприимчива к свету и обрабатывает каждый квант, проходящий сквозь нее.
Перспективы использования
Одно из перспективных направлений использования нейтрино — это нейтринная астрономия. Нейтрино несут важную информацию о ранних стадиях расширения Вселенной. Кроме того, известно, что звёзды, кроме света, излучают значительный поток нейтрино, которые возникают в процессе ядерных реакций. Поскольку на поздних стадиях звёздной эволюции за счёт нейтрино уносится до 90 % излучаемой энергии (нейтринное охлаждение), то изучение свойств нейтрино (в частности — энергетического спектра солнечных нейтрино) помогает лучше понять динамику астрофизических процессов. Кроме того, нейтрино без поглощения проходят огромные расстояния, что позволяет обнаруживать и изучать ещё более удалённые астрономические объекты.
Другим (практическим) применением является развиваемая в последнее время нейтринная диагностика промышленных ядерных реакторов. Проведённые в конце XX века физиками Курчатовского института эксперименты показали перспективность этого направления, и сегодня в России, Франции, Италии и других странах ведутся работы по созданию нейтринных детекторов, способных в режиме реального времени измерять нейтринный спектр реактора и тем самым контролировать как мощность реактора, так и композитный состав топлива (включая наработку оружейного плутония).
Теоретически потоки нейтрино могут быть использованы для создания средств связи (нейтринная связь), что привлекает интерес военных: частица теоретически делает возможной связь с подводными лодками, находящимися на глубине, или передачу информации сквозь Землю.
Нейтрино, образующиеся в результате распада радиоактивных элементов внутри Земли, могут использоваться для изучения внутреннего состава Земли. Измеряя потоки геологических нейтрино в разных точках Земли, можно составить карту источников радиоактивного тепловыделения внутри Земли.
Альтернативная Вселенная
Попробуем представить, что бы произошло, если бы нейтрино перестали взаимодействовать с барионами несколько раньше или несколько позже. Допустим, это случилось, когда возраст Вселенной составлял одну десятую секунды. В тот момент в ней было практически одинаковое число протонов и нейтронов. Это означает, что позднее все они объединились бы в ядра основного изотопа гелия (два протона и два нейтрона) и во Вселенной практически не осталось бы свободного водорода. В принципе, гелиевые облака могли бы со временем претерпеть гравитационную конденсацию и дать начало звездам, часть из которых обзавелись бы планетными системами. Однако на этих планетах не было бы водорода и, следовательно, воды, без которой мы не мыслим зарождения жизни.
Проблески во тьме «Глаза» детектора — это чрезвычайно чувствительные фотоэлектронные умножители. Почти 9600 таких трубок закреплены на геодезическом каркасе, окружающем акриловую емкость с тяжелой водой. Солнечные нейтрино при попадании в тяжелую воду вызывают ряд реакций, ведущих к появлению электронов, движущихся быстрее скорости света в воде. Это ведет к появлению черенковского излучения, которое и засекают фотоумножители.
Теперь рассмотрим обратный случай. Допустим, что нейтрино отстыковались от барионов, когда их энергия уже сильно упала по сравнению с той, какой она была, когда это на самом деле случилось, — скажем, когда возраст Вселенной дошел до 100 секунд. Тогда на каждые 100 млн протонов приходился бы всего один нейтрон. Но это означает, что во Вселенной не было бы гелия и вплоть до появления первых звезд она оставалась бы чисто водородной. Правда, звездам для первоначального поджога гелий и не нужен, так что они все равно бы возникали и рождали более тяжелые элементы, но все же это была бы совершенно другая Вселенная.
Существование реликтовых нейтрино вытекает из общепринятой космологической модели эволюции Вселенной. Поэтому регистрация этих частиц и определение их кинетической энергии позволят непосредственно проверить один из ключевых выводов этой модели (что наверняка будет вознаграждено Нобелевской премией). Картирование нейтринного небосвода даст возможность выявить корреляции между колебаниями плотности нейтринного потока и нынешним распределением галактик и галактических скоплений, что само по себе станет огромным научным достижением. И наконец, детектирование реликтовых нейтрино позволит уточнить массу этой частицы, которая пока известна лишь очень приблизительно. А если надежды Джозефа Формажио и других физиков, которые занимаются поиском реликтовых нейтрино, оправдаются, то таких открытий дождемся и мы сами, а не только наши внуки и правнуки.
Статья «Большая охота за реликтовыми нейтрино» опубликована в журнале «Популярная механика»
(№8, Август 2010).
Реакция без порога
«Все современные методы детектирования нейтрино перестают работать, если кинетическая энергия этих частиц оказывается меньше определенного нижнего порога, — говорит профессор Формажио. — К примеру, в канадской подземной обсерватории Сэдбери солнечные нейтрино либо непосредственно ‘расколачивают’ ядра дейтерия на составляющие их нейтроны и протоны, либо заставляют внутриядерные нейтроны трансформироваться в протоны, взаимодействуя с входящими в их состав кварками. Энергетический порог этих реакций неизмеримо выше энергии реликтовых нейтрино. Однако есть реакция, свободная от такого ограничения, — бета-распад трития, наиболее тяжелого изотопа водорода. Ядро этого радиоактивного элемента самопроизвольно распадается на ядро гелия-3, электрон и электронное антинейтрино. Аналогично нейтрино может столкнуться с ядром трития и заставить его превратиться в электрон и легкий изотоп гелия. А поскольку ядра трития сами по себе нестабильны, для запуска этой реакции пригодны нейтрино любых сколь угодно малых энергий, в том числе и реликтовые, рассеянные по космическому пространству».
Но как же отличить распады, стимулированные ударами нейтрино, от намного чаще встречающихся спонтанных распадов этих же ядер? Оказывается, для решения этой проблемы можно с успехом использовать закон сохранения энергии. Поскольку при спонтанном распаде ядра трития антинейтрино уносит часть его исходной энергии, суммарная кинетическая энергия обеих заряженных конечных частиц, то есть электрона и ядра гелия-3, оказывается чуть-чуть меньшей, нежели при распаде ядра после захвата нейтрино. Если сравнить энергетические спектры конечных продуктов бета-распада ядер трития, среди них можно выделить именно те, что обусловлены захватом реликтовых нейтрино.
Тритий получают в атомных реакторах, он чрезвычайно дорог, а его общие запасы исчисляются всего лишь десятками килограммов. Сколько же нужно этого изотопа для обнаружения реликтовых нейтрино? По словам Джозефа Формажио, расчеты показывают, что для вполне достаточной для целей космологии ежегодной регистрации десяти реликтовых нейтрино вполне хватит 100 г трития. Однако для анализа спектров распада необходимы приборы, обладающие разрешением порядка массы покоя нейтрино. Создание такой аппаратуры — исключительно сложная задача, так как, по последним данным, масса покоя нейтрино лежит в диапазоне от 0,05 до 2 эВ. «Наша группа как раз сейчас ведет разработки, результаты которых могут лечь в основу создания таких высокочувствительных спектрометров, — говорит профессор Формажио. — Мы думаем, что это вполне возможно, хотя работа может растянуться на пару десятилетий. Но мне всего 36 лет, и впереди еще много времени. Хотя, конечно, настоящие нейтринные телескопы появятся намного позже».
В культуре
- В книге Станислава Лема «Солярис» «гости», созданные самим Солярисом, имеют в своей основе нейтринную структуру.
- В другом романе Станислава Лема «Глас Господа» нейтрино использовалось для передачи сообщения от предположительно чрезвычайно высокоразвитой цивилизации.
- В «Мире Полудня» братьев Стругацких «флюктуации нейтринных полей» вызывают перебои в работе системы «нуль-транспортировки» (физической телепортации).
- Нейтрино посвящена песня Тимура Шаова — «Свободная частица».
- Нейтрино упоминается в песне Владимира Высоцкого «Марш студентов-физиков».
- В фильме «2012» произошедший на Солнце выброс нейтрино привёл к расплавлению земного ядра, что привело к геотектонической катастрофе. Это, конечно, кинематографическая выдумка, так как низкоэнергетические нейтрино, излучаемые Солнцем, практически не взаимодействуют с веществом Земли.
Проблемы физики
Области, связанные с нейтрино и астрофизикой, разнообразны и быстро развиваются. Текущие вопросы, привлекающие большое число экспериментальных и теоретических усилий, следующие:
- Каковы массы различных нейтрино?
- Как они влияют на космологию Большого взрыва?
- Осциллируют ли они?
- Могут ли нейтрино одного типа превращаться в другой, пока они путешествуют через материю и пространство?
- Являются ли нейтрино принципиально отличными от своих античастиц?
- Как звезды разрушаются и образуют сверхновые?
- Какова роль нейтрино в космологии?
Одной из давних проблем, вызывающей особый интерес, является так называемая проблема солнечных нейтрино. Это название относится к тому, что во время нескольких наземных экспериментов, проводившихся в течение последних 30 лет, постоянно наблюдалось меньше частиц, чем необходимо для производства энергии, излучаемой солнцем. Одним из возможных ее решений является осцилляция, т. е. преобразование электронных нейтрино в мюонные или тау во время путешествия к Земле. Так как гораздо труднее измерить низкоэнергетические мюон- или тау-нейтрино, такого рода преобразование могло бы объяснить, почему мы не наблюдаем правильного количества частиц на Земле.
Достоверность экспериментальных данных
Большинство современных экспериментальных данных получено в результате обработки результатов измерений математическими моделями. Возникает вопрос насколько можно доверять таким «экспериментальным» данным.
Дело в следующем. Многие математические модели являются упрощенным отражением действительности, часть несущественных (с точки зрения авторов) параметров в них опущена в целях упрощения вычислений. Очень часто такой подход оправдан и дает возможность получить требуемые экспериментальные данные. Но в природе упрощенный снимок не может точно соответствовать оригиналу, поскольку между ними есть разница, а подлинным является только оригинал.
Таким образом, математические модели вносят искажения в обрабатываемые данные связанные не только с точностью вычислений, но и с неточностями или ошибками самой модели. Ярким примером того является множество сказок сочиненных Стандартной моделью в физике микромира, считающей элементарные частицы либо бесструктурными образованиями либо состоящими из не существующих в природе кварков. Такое упрощение позволяет обрабатывать экспериментальные данные, получаемые на ускорителях, но вот вопрос: можно ли им всегда доверять. — Ответ очевиден: ни в коем случае. Упростив картину микромира путем игнорирования структуры элементарных частиц, мы заменили подлинную картину миражем.То, что мы «видим» с помощью математической модели может быть продуктом самой модели, а не отражением действительности, и об этом никогда не следует забывать.
11.2.2013Владимир Горунович
История открытия
Одно из первых наблюдений взаимодействия нейтрино в пузырьковой камере
Одной из основных проблем в ядерной физике 20-30-х годов XX века была проблема бета-распада: спектр электронов, образующихся при β-распаде, измеренный английским физиком Джеймсом Чедвиком ещё в 1914 году, имеет непрерывный характер, то есть, из ядра вылетают электроны самых различных энергий.
С другой стороны, развитие квантовой механики в 1920-х годах привело к пониманию дискретности энергетических уровней в атомном ядре: это предположение было высказано австрийским физиком Лизой Мейтнер в 1922 году. То есть спектр вылетающих при распаде ядра частиц должен быть дискретным и показывать энергии, равные разницам энергий уровней, между которыми происходит переход при распаде. Таковым, например, является спектр энергий альфа-частиц при альфа-распаде.
Таким образом, непрерывность спектра электронов β-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 году знаменитый датский физик Нильс Бор на Римской конференции выступил с идеей о несохранении энергии. Однако было и другое объяснение — «потерянную» энергию уносит какая-то неизвестная и незаметная частица.
Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы выдвинул 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:
Впоследствии «нейтроном» была названа, как оказалось, другая элементарная частица, наряду с протоном входящая в состав атомных ядер. А предсказанная Паули частица в работах 1933—1934 годов итальянца Энрико Ферми на итальянский манер была названа «нейтрино».
На Сольвеевском конгрессе 1933 года в Брюсселе Паули выступил с рефератом о механизме β-распада с участием лёгкой нейтральной частицы со спином ½. Это выступление было фактически первой официальной публикацией, посвящённой нейтрино.
Исследования нейтрино
Нейтрино изучается в десятках лабораторий мира (см. неполный список экспериментов в физике нейтрино).
См. также: Нейтринная астрономия
Дефицит солнечных нейтрино
Ядерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики.
Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую термоядерную активность (а, значит, и температуру) в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино).
Сегодня понятно, что правильным, скорее всего, является второй путь, то есть различные виды нейтрино могут преобразовываться друг в друга; это так называемые нейтринные осцилляции, в пользу которых свидетельствуют наблюдения и угловой анизотропии атмосферных нейтрино, а также проведённые в начале этого века эксперименты с реакторными (см. KamLAND) и ускорительными нейтрино.
Кроме того, существование нейтринных осцилляций напрямую подтверждено опытами в Садбери, в котором были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов[источник не указан 2409 дней] и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»).
Сообщение о возможном превышении скорости света
22 сентября 2011 года коллаборация OPERA объявила о регистрации возможного превышения скорости света мюонными нейтрино (на 0,00248 %). Нейтрино от ускорителя SPS (ЦЕРН, Швейцария) якобы прибывали к детектору (находящемуся на расстоянии 730 км в подземной лаборатории Гран-Сассо, Италия) на 61±10 наносекунд раньше расчётного времени; это значение получено после усреднения по 16 тыс. нейтринных событий в детекторе за три года. Физики обратились к своим коллегам с просьбой проверить результаты в подобных экспериментах MINOS (лаборатория Fermilab возле Чикаго) и T2K (Япония).
Менее чем за месяц в архиве препринтов появилось около 90 статей, предлагающих возможные объяснения зарегистрированного эффекта.
23 февраля 2012 года коллаборация OPERA сообщила об обнаружении двух ранее неучтённых эффектов, которые могли иметь влияние на процесс измерения времени полёта нейтрино. Для проверки степени влияния данных эффектов на результаты измерений было решено провести новые эксперименты с нейтринными пучками.
Проведённые в ноябре-декабре 2011 года независимые измерения в той же лаборатории (эксперимент ICARUS) сверхсветовых скоростей нейтрино не обнаружили.
В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стала техническая ошибка (плохо вставленный разъём оптического кабеля, что приводило к задержке в часах на 73 наносекунды).
Упругое когерентное рассеяние нейтрино
В 2017 году экспериментально обнаружено упругое когерентное рассеяние нейтрино. Используя этот эффект, можно создавать небольшие переносные детекторы нейтринного излучения.
Нейтринное цунами
Много интересного «знают» нейтрино, обрушивающиеся на Землю из далекого космоса. Они доносят до нас мощное дыхание огромных горячих звезд. Энергия теплового излучения этих звезд столь велика, что в их недрах постоянно возникают пары легких частиц — электронов и позитронов. Сталкиваясь друг с другом, они опять превращаются в фотоны теплового излучения. Казалось бы, эта игра, в которой фотоны и электрон-позитронные пары, как мяч, перебрасывают друг другу энергию, может продолжаться бесконечно долго.
Но нет. Как только температура звезды достигает сотни миллионов градусов, в жизни звезды наступает драматический перелом. При такой температуре некоторые электрон-позитронные пары превращаются не в фотоны, а в пару нейтрино-антинейтрино. Эти частицы уже никогда не столкнутся друг с другом. Заменив в игре электрон-позитронных партнеров, они не передают мяч — энергию, а как озорные мальчишки, нарушая все правила, уносят его (точнее, ее) с собой.
Эта энергия потеряна для звезды навсегда. И чем выше ее температура, тем больше нейтрино она испускает. Они играют роль окна, распахнутого на улицу из жарко натопленной комнаты. Чтобы комната не остыла, в печь надо подкладывать все больше дров. Так и звезда начинает все интенсивнее расходовать свое термоядерное топливо. Как и температура печи в комнате, повышается температура ее недр, а вместе с ней увеличивается и число испускаемых нейтрино. В последние столетия своей жизни звезды, по-видимому, в основном теряют энергию в виде нейтрино, а не света.
Эти частицы так быстро расхищают энергетические запасы звезды, что наступает момент, когда ей уже нечем восполнить эту убыль. Горючее звезды — водород — полностью «выгорел». Но звезда не остывает. Как организм человека съедает сам себя при голодании, так и звезда, по-видимому, начинает расходовать гравитационную энергию своей массы.
Начинается катастрофически быстрое сжатие звезды — коллапс. Интенсивность нейтринного потока невероятно возрастает. В течение сотых долей секунды звезда «выдыхает» больше нейтрино, чем было испущено ею за всю жизнь. По современным представлениям так заканчивают свою эволюцию все звезды с массой большей, чем у Солнца.
Иногда во время коллапса от звезды отделяется небольшая часть, которая с громадной скоростью расширяется. Астрономы наблюдают свечение этого облака — так называемую вспышку сверхновой. Возможно, что другие звезды коллапсируют спокойно, обходясь без фейерверка.
Если вспышка сверхновой произойдет в центре нашей Галактики, то мощная нейтринная волна достигнет и нашей планеты. По оценкам, сделанным учеными, ее можно будет зарегистрировать в счетчике, содержащем несколько сотен тонн жидкости. Если несколько таких нейтринных счетчиков расположить в разных местах земного шара, то по последовательности зарегистрированных ими нейтринных сигналов можно будет определить, откуда пришла нейтринная волна.
Вспышки сверхновых — довольно редкое явление: примерно, одна сверхновая за 300 лет в нашей Галактике. Но если верно предположение о механизме «тихого» коллапса, то нейтринное цунами должно обрушиваться на Землю гораздо чаще — почти раз в месяц! Если когда-нибудь удастся зарегистрировать их, то мы получим возможность, не покидая Земли, узнать об интереснейшем периоде в жизни звезд.
Неуловимая частица
Это одна из наиболее распространенных частиц во Вселенной. Так как она очень мало взаимодействует с веществом, ее невероятно трудно обнаружить. Электроны и нейтрино не участвуют в сильных ядерных взаимодействиях, но и в равной степени принимают участие в слабых. Частицы, обладающие такими свойствами, называются лептонами. В дополнение к электрону (и его античастице позитрону), к заряженным лептонам относят мюон (200 масс электрона), тау (3500 масс электрона) и их античастицы. Их так и называют: электрон-, мюон- и тау-нейтрино. У каждого из них есть антиматериальная составляющая, называемая антинейтрино.
Мюон и тау, подобно электрону, имеют сопутствующие им частицы. Это мюон- и тау-нейтрино. Три типа частиц различаются друг от друга. Например, когда мюонные нейтрино взаимодействуют с мишенью, они всегда производят мюоны, и никогда тау или электроны. При взаимодействии частиц, хотя электроны и электрон-нейтрино могут создаваться и уничтожаться, их сумма остается неизменной. Этот факт приводит к разделению лептонов на три вида, каждый из которых обладает заряженным лептоном и сопровождающим его нейтрино.
Для обнаружения этой частицы необходимы очень большие и чрезвычайно чувствительные детекторы. Как правило, нейтрино с низким уровнем энергии будут путешествовать в течение многих световых лет до взаимодействия с веществом. Следовательно, все наземные эксперименты с ними полагаются на измерении их малой доли, взаимодействующей с регистраторами разумных размеров. Например, в нейтринной обсерватории в Садбери, содержащей 1000 т тяжелой воды, через детектор проходит около 1012 солнечных нейтрино в секунду. А обнаруживается только 30 в день.
История открытия
Одно из первых наблюдений взаимодействия нейтрино в пузырьковой камере
Одной из основных проблем в ядерной физике 20-30-х годов XX века была проблема бета-распада: спектр электронов, образующихся при β-распаде, измеренный английским физиком Джеймсом Чедвиком ещё в 1914 году, имеет непрерывный характер, то есть, из ядра вылетают электроны самых различных энергий.
С другой стороны, развитие квантовой механики в 1920-х годах привело к пониманию дискретности энергетических уровней в атомном ядре: это предположение было высказано австрийским физиком Лизой Мейтнер в 1922 году. То есть спектр вылетающих при распаде ядра частиц должен быть дискретным и показывать энергии, равные разницам энергий уровней, между которыми происходит переход при распаде. Таковым, например, является спектр энергий альфа-частиц при альфа-распаде.
Таким образом, непрерывность спектра электронов β-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 году знаменитый датский физик Нильс Бор на Римской конференции выступил с идеей о несохранении энергии. Однако было и другое объяснение — «потерянную» энергию уносит какая-то неизвестная и незаметная частица.
Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы выдвинул 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:
Впоследствии «нейтроном» была названа, как оказалось, другая элементарная частица, наряду с протоном входящая в состав атомных ядер. А предсказанная Паули частица в работах 1933—1934 годов итальянца Энрико Ферми на итальянский манер была названа «нейтрино».
На Сольвеевском конгрессе 1933 года в Брюсселе Паули выступил с рефератом о механизме β-распада с участием лёгкой нейтральной частицы со спином ½. Это выступление было фактически первой официальной публикацией, посвящённой нейтрино.
Что не так с нейтрино?
Однако, самое странное свойство нейтрино заключается в том, что им не обязательно заканчивать свое путешествие точно такими же, какими они его начинали.
В 1998 году 11 000 фотоумножителей подземного детектора «Супер-Камиоканде» в Японии подтвердили, что суть нейтрино, спускающихся из атмосферы и прошедших сквозь Землю, отличается. По дороге от Солнца они изменили тип, выбрав один из трех вариантов. Это колебание указало на то, что у нейтрино действительно есть масса. Если бы у них ее не было, больше выбирать было бы не из чего.
Узнать об этих частицах хоть что-то было крайне трудно, поскольку нейтрино сложно обнаружить и произвести. Но в настоящее время есть несколько способов сделать это. Экспериментаторы могут захватить немного на пути от Солнца, как тот самый японский детектор и другие его коллеги. Или же они могут разместить детекторы рядом с ядерными реакторами, которые производят электронные антинейтрино. Наконец, физики могут запустить ускорители частиц и столкнуть протоны с кусочками графита, в процессе этого создавая потоки нейтрино. Последнему эксперименту еще предстоит случиться. Искусственные нейтрино легче захватить, чем их неуловимых родственников, но из-за их квантовой природы обнаружение нейтрино является вероятностной задачей.
Ароматы нейтрино — электрон, мюон и тау — не являются отдельными индивидуальными частицами, а комбинациями разных масс нейтрино. Эти массы связаны с энергиями нейтрино, как Эйнштейн учил нас в E=mc². Хотя нейтрино могут родиться с определнной энергией, а значит и с определенным ароматом (Солнце, например, производит множество электронных нейтрино), квантовое состояние этих нейтрино представляет собой смесь всех трех, закрученную во времени. «Они просто по своей сути квантово-механические. Если я дам вам электрон и спрошу через десять минут, остался ли электрон в вашей руке, ответом будет «да», — говорит Мессье. — А вот нейтрино — нет».
В прошлом месяце японские экспериментаторы продемонстрировали этот колебательный эффект, обнаружив, что нейтрино более яркие ночью. По мере того, как электронные нейтрино летят потоком от Солнца в направлении Земли, они колеблются между мюон- и тау-нейтрино. Но после того, как они проходят через плотную материю нашей планеты, некоторые из них меняются в обратную сторону. Это говорит о том, что некоторые квантово-механические трансформации происходят во время взаимодействия с веществом на Земле, в частности с электронами. По словам Мессье, электронные нейтрино могут обмениваться с W-бозоном, носителем слабой силы, во время этого взаимодействия.
Эксперимент LBNE займется рассмотрением этих связанных с материей эффектов, которые приводят к появлению капель электронных нейтрино посреди душа из мюон-нейтрино. Ускорители Fermolab будут посылать нейтрино на полторы тысячи километров в детектор с жидким аргоном, погребенным под Южной Дакотой. Это позволит физикам не только изучить эффекты материи, но и выяснить, какая материя взаимодействует с нейтрино в первую очередь.
Уилсон отмечает, что этот крошечный эффект имеет важные последствия для асимметрии между веществом и антивеществом.
Как насчет собственной массы нейтрино? Стандартная модель не может объяснить и это. Физики смогли только сказать, что нейтрино отличаются друг от друга, но никакой конкретики. Мы не знаем, какие нейтрино самые тяжелые, а какие — самые легкие. Детектор под названием NuMO Off-axis ve Appearance, или NOvA, поможет определить массовую иерархию нейтрино. NuMI — это пучок нейтрино из Fermilab; 14000-тонный детектор NoVA будут следить за несоответствием между отходящими мюон-нейтрино и прибывающими электрон-нейтрино.
Даже если в ходе этих экспериментов удастся генерировать новые данные о массе, физики не смогут точно сказать, как эта масса возникает. Поскольку нейтрино легче любых других частиц, вряд ли механизм Хиггса будет наделять их массой, как это происходит с другими частицами.
«Должен быть какой-то механизм, который определяет их массы, — говорит Мессье. — Но какие массы? Какому порядку они следуют? Каков порядок смешения? Это запустит целый ряд экспериментальных программ, которые еще больше усугубят проблемы Стандартной модели».
LBNE, NOvA и другие предстоящие эксперименты растянут эти трещины, пока Стандартная модель полностью не рухнет. И на руинах ученые надеются построить новую теорию физики.
Загадка космических ливней
Не так давно выяснилось, что нейтрино не следуют правилам поведения, обязательным для остальных частиц. Известно, что чем большую энергию имеет, например, протон, тем более неохотно вступает он в контакт с окружающим веществом. А нейтрино — наоборот. Они становятся все более общительными. Такое изменение «характера» нейтрино влияет прежде всего на его проникающую способность. Если энергия нейтрино очень велика, то для него серьезным препятствием может стать даже атмосфера Земли!
Это необычное свойство нейтрино навело ученых на одну интересную мысль. В последние годы было обнаружено несколько загадочных широких ливней элементарных частиц, возникающих в атмосфере. Если сложить энергии всех частиц такого ливня, то получится очень большая величина. Физики предполагают, что эти широкие ливни могли быть созданы нейтрино, обладающим такой огромной энергией. Оно прилетает из далекого космоса и застревает в земной атмосфере, порождая гигантские потоки элементарных частиц.
Впрочем, пока зарегистрировано всего лишь около десяти ливней, поэтому смелая гипотеза нуждается в подтверждении.
Примечания
- — статья из Физической энциклопедии
- ↑
- Куденко Ю. Г. Нейтринная физика: год угла смешивания θ13{\displaystyle \theta _{13}}, Природа, № 11, 2012
- Дорошкевич А. Г., Зельдович Я. Б., Новиков И. Д. Кинетическая теория нейтрино в анизотропных космологических моделях // Проблемы теоретической физики. Сборник, посвящённый Николаю Николаевичу Боголюбову в связи с его шестидесятилетием. — М., Наука, 1969. — Тираж 4000 экз. — c. 15-25
- Маркс Г., Люкс И. Антинейтринное свечение Земли // Проблемы теоретической физики. Сборник, посвящённый Николаю Николаевичу Боголюбову в связи с его шестидесятилетием. — М., Наука, 1969. — Тираж 4000 экз. — c. 28-34