Определение и характеристики ломаной геометрической фигуры

Многоугольники

Многоугольник — это геометрическая фигура, которая характеризуется количеством углов и звеньев. Углы составлены парами звеньев замкнутой ломаной, сходящимися в одной точке. Звенья называются еще сторонами многоугольника. Общие точки двух отрезков называют вершинами многоугольника.

Определение и характеристики ломаной геометрической фигуры

треугольникомчетырехугольникапятиугольник

Часть плоскости, которая ограничена замкнутой ломаной, называется плоским многоугольником. Другое ее название — многоугольная область.

Свойства

Ниже приведены основные свойства, общие для всех многоугольников:

  1. Если вершины многоугольника служат концами одной стороны, их называют соседними. Если же вершины не прилежат к одной стороне, они несоседние.
  2. Наименьшее количество сторон у многоугольника равняется трем. Однако треугольники, находясь рядом друг с другом, могут образовывать новые фигуры.
  3. Если отрезок соединяет между собой несоседние вершины, он носит название диагонали.
  4. Если фигура лежит относительно одной прямой в любой полуплоскости, она называется выпуклой. При этом прямая содержит в себе одну сторону фигуры и сама принадлежит полуплоскости.
  5. Угол, смежный внутреннему углу многоугольника при некоторой вершине, называется внешним.
  6. Если все стороны и углы многоугольника равны, он называется правильным.

Треугольники

Треугольником в математике принято называть плоскую геометрическую фигуру, которая состоит из трех точек, не располагающихся на одной прямой. Эти точки соединены тремя отрезками.

Точки представляют собой вершины или треугольника, а отрезки — его стороны. Возле каждой из вершин образуется угол треугольника. Таким образом эта фигура имеет три угла, что видно из ее названия.

Различают следующие виды треугольников:

  1. Равносторонние — все стороны их равны по длине.
  2. Разносторонние — все стороны различаются по длине.
  3. Равнобедренные — две стороны из трех имеют одинаковую длину.
  4. Остроугольные — если все углы острые.
  5. Прямоугольные — если имеется прямой угол.
  6. Тупоугольные — если есть один тупой угол.

Четырехугольники

Плоская геометрическая фигура, имеющая четыре угла и четыре стороны, называется четырехугольником.

Если все углы у четырехугольника прямые — это прямоугольник.

Правильный четырехугольник носит название квадрата.

Типы ломаных линий

Рассматриваемые геометрические фигуры могут быть выстроены самыми разнообразными способами — они могут быть незамкнутыми и замкнутыми, пересекающимися и непересекающимися.

Замкнутая ломаная соответствует определенной геометрической фигуре — многоугольнику.

Если отрезки одной такой фигуры имеют точки пересечения друг с другом — эта линия называется самопересекающейся.

Всего существует 4 типа подобных линий по своей структуре:

  1. Замкнутые, которые не имеют пересечений.
  2. Незамкнутые, которые не имеют пересечений.
  3. Незамкнутые самопересекающиеся.
  4. Замкнутые, имеющие самопересечения.

Определение и характеристики ломаной геометрической фигуры

Звенья, вершины и длина

Чтобы полностью усвоить сущность и свойства этого понятия, рассмотрим, что такое звенья ломаной линии в математике, а также что представляют собой ее вершины и длина:

  1. Отдельные отрезки, составляющие такую линию, называются ее звеньями. Каждая такая линия может состоять как минимум из двух звеньев. Максимальное количество звеньев при этом не ограничено.
  2. Точки соединения концов этих отрезков называются вершинами.
  3. Если концы ломаной соединяются в одной точке, такая фигура носит название замкнутой. Ее звенья могут иметь взаимные пересечения.
  4. Если же звенья одной замкнутой линии не пересекаются между собой, она называется многоугольником.
  5. Геометрическое понятие длины ломаной включает в себя сумму длин всех ее звеньев.

Обозначение ее составляется из заглавных латинских букв, которые стоят на вершинах:

  1. Каждая вершина на рисунке обозначается одной буквой (например: A, B, C, D или E).
  2. Звено принято обозначать двумя буквами (концы соответствующего отрезка, например: AB, BC, CD, DE).

В целом такую совокупность принято называть ABCDE или EDCBA.