Вселенная: что это такое, описание, строение, происхождение, фото и видео

Воздействие пребывания в открытом космосе на организм человека[править | править код]

В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд — примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.

Что он собой представляет

Научная точка зрения гласит, что космос – это определенные участки вселенной, которые окружают собой небесные тела и их атмосферы. Однако полностью пустым это пространство назвать нельзя. Было доказано, что оно содержит некоторое количество водорода и имеет межзвездное вещество. Ученые также подтвердили существование электромагнитного излучения в его пределах.

Сейчас науке не известны данные о конечных пределах космоса. Астрофизики и радиоастрономы утверждают, что приборы не в состоянии «увидеть» весь космос. Это несмотря на то, что их рабочее пространство охватывает 15 миллиардов световых лет.

Вселенная: что это такое, описание, строение, происхождение, фото и видео

Научные гипотезы не отрицают возможного существования вселенных подобно нашей, однако подтверждения этому также нет. В целом космос – это вселенная, это мир. Его характеризует упорядоченность и материализация.

Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями

Наконец-то. Меня всю дорогу подмывало привести этот маленький примерчик:

Нельзя извлечь корень? Если речь идет о действительных числах, то действительно нельзя. В комплексных числах извлечь корень –  можно! А точнее, два корня:

Действительно ли найденные корни являются решением уравнения ? Выполним проверку:

Что и требовалось проверить.

Часто используется сокращенная запись, оба корня записывают в одну строчку под «одной гребёнкой»: .

Такие корни также называют сопряженными комплексными корнями.

Как извлекать квадратные корни из отрицательных чисел, думаю, всем понятно: , , , ,  и т.д. Во всех случаях получается два сопряженных комплексных корня.

О том, как извлечь квадратный корень из комплексного числа с ненулевой мнимой частью, я расскажу чуть позже, а пока нечто знакомое:

Пример 14

Решить квадратное уравнение

Вычислим дискриминант:

Дискриминант отрицателен, и в действительных числах уравнение решения не имеет. Но корень можно извлечь в комплексных числах!

По известным формулам получаем два корня: – сопряженные комплексные корни

Таким образом, уравнение  имеет два сопряженных комплексных корня: ,

Нетрудно понять,что в поле комплексных чисел «школьное» квадратное уравнение всегда при двух корнях! И вообще, любое уравнение вида  имеет ровно  комплексных корней, часть которых (или все) могут быть действительными.

Простой пример для самостоятельного решения:

Пример 15

Найти корни уравнения  и разложить квадратный двучлен на множители.

Разложение на множители осуществляется опять же по стандартной школьной формуле. Но на этом тема не закрыта! Совсем скоро вы будете уверенно решать квадратные уравнения с комплексными коэффициентами (которые не являются действительными).

Как извлечь корень из произвольного комплексного числа?

Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при  получается квадратный корень . Что касается именно квадратного корня, то он успешно извлекается и «алгебраическим» методом, который рассмотрен на уроке Выражения, уравнения и системы уравнений с комплексными числами. Но то позже – здесь и сейчас мы познакомимся с универсальным способом, пригодным для произвольного «эн»:

Уравнение вида  имеет ровно  корней , которые можно найти по формуле:, где  – это модуль комплексного числа ,  – его аргумент, а параметр  принимает значения:

Пример 16

Найти корни уравнения

Перепишем уравнение в виде

В данном примере ,  , поэтому уравнение будет иметь два корня:  и .
Общую формулу можно сразу немножко детализировать:,

Теперь нужно найти модуль и аргумент комплексного числа :
Число  располагается в первой четверти, поэтому:
Напоминаю, что при нахождении тригонометрической формы комплексного числа всегда желательно сделать чертеж.

Еще более детализируем формулу:,

На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось.

Подставляя в формулу значение , получаем первый корень:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Подставляя в формулу значение , получаем второй корень:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Ответ: ,

При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму.

Следует отметить, что на практике аргумент подкоренного числа может оказаться не так «хорош», как в рассмотренном примере. В этом случае для извлечения квадратного корня лучше использовать упомянутый выше «алгебраический» метод.

И напоследок рассмотрим задание-«хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: .

Пример 17

Найти корни уравнения , где

Сначала представим уравнение в виде :

Если , тогда

Обозначим  привычной формульной буквой: .
Таким образом, требуется найти корни уравнения

В данном примере , а значит, уравнение имеет ровно три корня: , ,
Детализирую общую формулу:,

Найдем модуль и аргумент комплексного числа :
Число  располагается во второй четверти, поэтому:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Еще раз детализирую формулу:Вселенная: что это такое, описание, строение, происхождение, фото и видео,
Корень удобно сразу же упростить:

Подставляем в формулу значение  и получаем первый корень:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Подставляем в формулу значение  и получаем второй корень:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Подставляем в формулу значение  и получаем третий корень:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Очень часто полученные корни требуется изобразить геометрически:
Как выполнить чертеж?
Сначала на калькуляторе находим, чему равен модуль корней   и чертим циркулем окружность данного радиуса. Все корни будут располагаться на данной окружности.

Теперь берем аргумент первого корня  и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром  и ставим на чертеже точку .

Берем аргумент второго корня  и переводим его в градусы: . Отмеряем транспортиром  и ставим на чертеже точку .

По такому же алгоритму строится точка

Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж.

Уравнения  четвертого   и высших порядков встречаются крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами.

Чтобы закрепить материал и узнать много нового, обязательно приходите на практикум Выражения, уравнения и системы уравнений с комплексными числами – будет жарко!

Решения и ответы:

Пример 6: Решение: Вселенная: что это такое, описание, строение, происхождение, фото и видеоВселенная: что это такое, описание, строение, происхождение, фото и видеоВселенная: что это такое, описание, строение, происхождение, фото и видео

Пример 8: Решение: Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку  (случай 1), то . Таким образом:  – число  в тригонометрической форме.

Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку  (случай 3), то Вселенная: что это такое, описание, строение, происхождение, фото и видео. Таким образом:  – число  в тригонометрической форме.

Пример 11: Решение: Представим число в тригонометрической форме:  (это число  Примера 8). Используем формулу Муавра : Вселенная: что это такое, описание, строение, происхождение, фото и видео

Пример 13: Решение:Вселенная: что это такое, описание, строение, происхождение, фото и видео

Пример 15: Решение:, Разложим квадратный двучлен на множители:

(Переход на главную страницу)

Структура и форма Вселенной

Возможные формы Вселенной

Утверждение того, что реликтовое излучение находится на самом краю Вселенной, довольно спорное. Доказано, что пространство расширяется быстрее скорости света, поэтому реальные края космоса уходят дальше мест, куда успела добраться световая энергия от Большого взрыва. По предварительным оценкам, сейчас размер Вселенной составляет примерно 91 миллиард световых лет, и это число постоянно растет.

Ученые со всего мира пытаются определить точную структуру пространства вокруг. Совершенно ясно, что космос состоит из галактик, между которыми находится пустота, пылевые облака, скопления астероидов и прочие объекты. Однако какую он имеет форму и структуру?

Пространство в четырех измерениях

Вселенная подвластна четырем измерениям: координатам XYZ и времени. На основе этого ученые составили три варианта структур, которым может подчиняться пространство вокруг:

  • Открытая по форме похожа на седло и не имеет границ, такая структура не может растягиваться в пространстве бесконечно и должна обязательно остановиться;
  • Плоская представляет собой квадрат, который может увеличиваться бесконечно;
  • Закрытая похожа на замкнутую сферу, которая не может расти бесконечно, однако исследователи отмечают, что это может произойти через “неограниченное” количество времени.

Ученые пока не решили, какая структура Вселенной является достоверной. Однако все три варианта позволяют спрогнозировать ее форму.

Границы на пути к космосу и пределы дальнего космоса[править | править код]

  • 0,5 км — до этой высоты проживает 80 % человеческого населения мира.
  • 2 км — до этой высоты проживает 99 % населения мира.
  • 5,0 км — 50 % от атмосферного давления на уровне моря.
  • 5,3 км — половина всей массы атмосферы лежит ниже этой высоты (немного ниже вершины горы Эльбрус).
  • 7 км — граница приспособляемости человека к длительному пребыванию в горах.
  • 8,2 км — граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть.
  • 8,848 км — высочайшая точка Земли гора Эверест — естественный предел доступности пешком.
  • 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
  • 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10—20 с); предел кратковременного дыхания чистым кислородом без дополнительного давления; потолок дозвуковых пассажирских лайнеров.
  • 15 км — дыхание чистым кислородом эквивалентно пребыванию в космосе.
  • 10—18 км — граница между тропосферой и стратосферой на разных широтах (тропопауза). Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
  • 20—22 км — верхняя граница биосферы: предел подъёма в атмосферу живых спор и бактерий воздушными потоками.
  • 25 км — днём можно ориентироваться по ярким звёздам.
  • ок. 35 км — начало космоса для воды или тройная точка воды: на этой высоте атмосферное давление 611,657 Па и вода кипит при 0 °C, а выше не может находиться в жидком виде.
  • 45 км — теоретический предел для прямоточного воздушно-реактивного самолёта.
  • 55 км — атмосфера не воздействует на космическую радиацию.
  • 40—80 км — максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью.
  • 80,45 км (50 миль) — официальная высота границы космоса в США.
  • 100 км — зарегистрированная граница атмосферы в 1902 г.: открытие отражающего радиоволны ионизированного 90—120 км.
  • 118 км — переход от атмосферного ветра к потокам заряжённых частиц.
  • 120—130 км — спутник на круговой орбите с такой высотой сможет сделать не более одного оборота.
  • 200 км — наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
  • 320 км — зарегистрированная граница атмосферы в 1927 г.: открытие отражающего радиоволны .
  • 350 км — наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
  • ок. 400 км — высота орбиты Международной космической станции
  • 500 км — начало внутреннего протонного радиационного пояса и окончание безопасных орбит для длительных полётов человека.
  • 1000—1100 км — максимальная высота полярных сияний, последнее видимое с поверхности Земли проявление атмосферы (но обычно хорошо заметные сияния происходят на высотах 90—400 км).
  • 2000 км — атмосфера не оказывает воздействия на спутники и они могут существовать на орбите многие тысячелетия.
  • 12 756 км — мы удалились на расстояние, равное диаметру планеты Земля.
  • 17 000 км — внешний электронный радиационный пояс.
  • 363 104—405 696 км — высота орбиты Луны над Землёй.
  • 930 000 км — радиус гравитационной сферы Земли и максимальная высота существования её спутников. Выше 930 000 км притяжение Солнца начинает преобладать, и оно будет перетягивать поднявшиеся выше тела.
  • 21 000 000 км — на таком расстоянии практически исчезает гравитационное воздействие Земли на пролетающие объекты.
  • 40 000 000 км — минимальное расстояние от Земли до ближайшей большой планеты Венера.
  • 56 000 000 — 58 000 000 км — минимальное расстояние до Марса во время Великих противостояний.
  • 8 230 000 000 км — дальняя граница пояса Койпера — пояса малых ледяных планет, в который входит карликовая планета Плутон.
  • ок. 300 000 000 000 км (300 млрд км) — ближняя граница облака Хиллса, являющемся внутренней частью облака Оорта — большого, но очень разрежённого скопища ледяных глыб, которые медленно летят по своим орбитам. Изредка выбиваясь из этого облака и приближаясь к Солнцу, они становятся кометами.
  • до 15 000 000 000 000 км — дальность вероятного нахождения гипотетического спутника Солнца звезды Немезида
  • 30 856 776 000 000 км — 1 парсек — более узкопрофессиональная астрономическая единица измерения межзвёздных расстояний, равен 3,2616 светового года.
  • 100 000 000 000 000 км (100 трлн км, ок. 10 св. лет) — в пределах этого радиуса находятся 11 ближайших звёзд.

Приготовление балыка

Существует огромное множество способов приготовления балыка, и всегда есть возможность импровизации, но есть и единые принципы, которым нужно стараться следовать.

Вселенная: что это такое, описание, строение, происхождение, фото и видео

Балык из рыбы разделяется по видам рыб, размерам, способу засолки, видам и степени вялености мяса рыбы. Очень вкусным получается балык холодного копчения (вяление рыбы в остывшем дыму), но его невозможно приготовить в домашних условиях.

Тонкости приготовления

  • Крупная рыба пластуется на боковник и нарезается для равномерного просаливания и вяления;
  • Не очень крупная рыба пластуется по хребту без вспарывания брюха, голова и хвост не удаляются, извлекаются только жабры и внутренности;
  • Очень крупная рыба разделывается на филе, которое режется на куски из которых балык готовится отдельно от теши;
  • Для ускорения процесса приготовления балыка, у рыбы убирается шкурка;
  • Если рыба балычится кусками, их размер должен быть крупным, но в меру – мелкие куски быстро пересыхают, а слишком крупные плохо просаливаются;
  • Вкус балыка зависит не только от способа засолки, но и от степени вялености – чем суше мясо рыбы, тем оно солёнее;
  • Соль, которая используется для засолки рыбы должна быть крупной без посторонних примесей;
  • После засолки, рыба должна отмачиваться столько часов, сколько дней она находилась в рассоле;
  • Для получения пряного вкуса балыка, на этапе засолки рыбы, к соли добавляется до ½ части сахара (чаще 20-30%) и пряные специи (душистый перец, мускатный орех, лавровый лист, черный перец горошком, кориандр, гвоздика, имбирь и другие).

В общем, приготовление балыка из рыбы выполняется следующим образом:

  1. Рыба очищается от чешуи и проходит разделку;
  2. Подготовленная рыба засаливается сухим способом или в рассоле;
  3. Засоленная рыба проходит отмачивание, которое уберет излишки соли;
  4. Рыба вывешивается для вяления или отправляется на холодное копчение.

Следует заметить, что балык засоленный в рассоле, в прохладных условиях, может находиться в нем несколько месяцев.

Загрязнение и милитаризация орбиты Земли

За довольно короткий период люди успели серьезно намусорить в космосе, загрязнив орбиту обломками спутников и других аппаратов. Сегодня в каталоге Стратегического командования США находится 16 тыс. околоземных объектов, 17 тыс. – занесено в его российский аналог. В действительности, сколько их сегодня летает на орбите, не знает никто, и это большая проблема.

Разгонные блоки, отработавшее свое спутники, вторые ступени ракет и даже инструменты, потерянные космонавтами, – все это кружится на орбите, угрожая действующим аппаратам и населению планеты. Загрязнение космического пространства – серьезнейшая проблема, и если этот процесс не замедлится, то через несколько десятилетий мы просто не сможем выводить спутники. Происшествия с участием космического мусора на орбите уже случались, к счастью, пока без человеческих жертв.

Не меньшую тревогу вызывают риски, связанные с использованием радиоактивных материалов в космосе: многие космические аппараты оснащены ядерными энергетическими установками. В 1978 году на территории северной Канады упал советский военный спутник «Космос-954» с тридцатью килограммами урана на борту. К счастью, катастрофа произошла в малообитаемой местности, поэтому ущерб был минимален, но скандал получился весьма громким.

Вселенная: что это такое, описание, строение, происхождение, фото и видеоМусор на околоземной орбите — это серьезная проблема, для которой пока нет решения

По разным оценкам, сейчас на орбите может находиться от нескольких десятков до сотни аппаратов с радиоактивными материалами на борту.

К сожалению, пока не существует эффективного способа «уборки» околоземной орбиты. Сегодня мы можем только отслеживать опасные объекты, не допуская их столкновения с действующими аппаратами.

Еще одной угрозой, стоящей сегодня перед человечеством, является милитаризация космического пространства. Существующие международные договоры, подписанные еще во времена холодной войны, не предусматривают полного запрета военного использования космоса. Появление новых технологий, таких как противоспутниковое оружие или орбитальные системы противоракетной обороны, могут превратить космос в еще одну арену гонки вооружений. Данная проблема требует не только уточнения действующих правовых норм, но и создания новых юридических инструментов, ограничивающих подобную деятельность.

Вселенная: что это такое, описание, строение, происхождение, фото и видео
Автор статьи:

Никифоров Владислав

Немного из истории

Середина 20-го века запомнилась многим космической гонкой, победителем из которой вышел СССР. В 1957-м году впервые был создан и запущен искусственный спутник, а немного позже в космосе побывало и первое живое существо.

Спустя два года на орбиту вышел искусственный спутник Солнца, а станция под названием «Луна-2» смогла оказаться на поверхности Луны. Легендарные Белка и Стрелка побывали в космосе только в 1960-м году, а спустя еще год там побывал и человек.

1962-й год запомнился групповым полетом кораблей, а 1963-й — тем, что впервые женщина оказалась на орбите. Открытого космоса человеку удалось достигнуть спустя два года.

Вселенная: что это такое, описание, строение, происхождение, фото и видео

Каждый из последующих годов нашей истории был отмечен событиями, связанными с освоением космоса.

Станция международного значения была организована в космосе только в 1998-м году. Это был и запуск спутников, и организация орбитальных станций, и многочисленные полеты людей из других стран.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты – одну координату буквенную, вторую – цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Доказательства, что Вселенная имеет возраст

Эдвин Хаббл поставил финальную точку в спорах, доказав наличие границ у Вселенной и их увеличение

Если верить теории Большого взрыва, то отсчет жизни Вселенной начинается в ту секунду, когда сжатая до микроскопических размеров сингулярность моментально расширилась. Со временем это пространство заполнили галактики и постепенно приняли тот вид, который люди наблюдают из телескопов.

Вселенная проделала долгий путь, на который ушли даже не миллионы, а миллиарды лет. Впервые о том, что у нее есть возраст, люди начали задумываться примерно в XVIII веке

Когда Земля была достаточно изучена, они обратили внимание к звездам и начали стремиться узнать как можно больше о них

Средневековая модель Вселенной

Изначально полагалось, что Вселенная бесконечна и не имеет возраста, являясь вечной. Но открытие законов термодинамики как минимум опровергло отсутствие возраста. Согласно им, тепло от горячих объектов переходит к более холодным, пока между ними не установится температурное равновесие. И если бы Вселенная существовала вечно, планеты, звезды и другие космические тела были бы одной температуры. Благодаря таким умозаключениям ученые того времени установили, что пространство вокруг имеет определенный возраст.

Интересный факт: ученые не исключают наличие в космосе областей, где объекты имеют одну температуру. Но они должны состоять из одинаковых материалов.

Доказать наличие возраста у Вселенной иным способом удалось в XX веке. Астроном Леметр выдвинул гипотезу, что пространство вокруг не бесконечно, имеет границы и постоянно увеличивается. Эдвин Хаббл поддержал его, поскольку заметил, что соседние галактики постепенно отдаляются от Млечного Пути. И если перемещаться назад во времени, можно оказаться во мгновении, когда размеры Вселенной были минимальными и еще не начали расти. Именно в этот момент и произошло ее рождение, соответственно она имеет возраст.

Воздействие космического пространства на человеческий организм

Человечество уже более полувека активно исследует околоземное пространство, поэтому мы неплохо представляем, как оно воздействует на наше тело. Вопреки распространенному мнению, человека, оказавшегося в космическом вакууме без скафандра, не разорвет на части и кровь не закипит у него в сосудах, ему даже не угрожает моментальная потеря сознания. Он просто умрет от недостатка кислорода, другими словами, задохнется.

Прочими очевидными опасностями, которые поджидают незадачливого космонавта, является декомпрессия, солнечные ожоги незащищенных частей тела, переохлаждение. Эти процессы начинаются через 10-15 секунд после контакта нашего тела с космическим пространством. Необратимые повреждения, несовместимые с жизнью, они наносят не сразу: считается, что смерть наступает через одну-две минуты. Все вышесказанное – это скорее теоретические выкладки, на практике их по понятным причинам не проверяли.

Вселенная: что это такое, описание, строение, происхождение, фото и видеоЧеловек только начинает изучение и освоение космоса

В истории НАСА описан случай, когда человек из-за повреждения скафандра оказался в условиях, близких к космическому вакууму (давление ниже 1 Па). Он потерял сознание только через 14 секунд – примерно такое время потребовалось для начала кислородного голодания мозга. Он пришел в себя только после повышения давления до уровня высоты 4,6 км. Позже астронавт рассказывал, что чувствовал потерю воздуха и слюну, закипающую на языке.

В середине 90-х годов появилась информация о еще одном похожем инциденте, произошедшем в 1960 году. Во время подъема в открытом аэростате на высоту 19,5 мили, у пилота произошла разгерметизация рукава скафандра. Это создало ему серьезный дискомфорт, но после возвращения в более низкие слои атмосферы они исчезли без особых негативных последствий.