Глиссада

Курсоглиссадная система – «проводник» для пилота

Заход на посадку – наиболее ответственная часть полета, которая осуществляется, по большей части, с использованием радиотехнических приборов. Однако финальный этап посадки выполняется именно визуально. При этом, как отмечают специалисты, чем раньше наступает визуальный контакт с взлетно-посадочной полосой, тем больше времени у летчика для устранения погрешностей захода на посадку.

Сегодня одна из самых распространенных систем захода на посадку – это курсоглиссадная система. Она обеспечивает экипаж информацией о положении самолета относительно линии посадочного курса и глиссады – предпосадочной наклонной прямой. Основные компоненты курсоглиссадной системы – это радиомаяки, которые отвечают за наведение самолета в горизонтальной и вертикальной плоскостях, то есть по курсу и по глиссаде.

Еще в 30-е годы прошлого века советские ученые разработали и испытали первую инструментальную систему захода на посадку в сложных условиях – «Ночь-1». В 1950 году появилась система посадки СП-50 «Материк», которая позволяла самолетам садиться при метеоминимуме 50×500 – это когда высота нижней границы облаков всего 50 метров, а дальность видимости на взлетно-посадочной полосе всего 500 метров. К 1970 году «Материк» работал в 70 аэропортах страны. Примерно в то же время в стране началась разработка ЛКГСП.

Преимущества использования в системах посадки лазерного излучения по сравнению с обычными электрическими лампами в данном случае очевидны. Во-первых, высокая степень монохроматичности лазерного излучения делает его более заметным на фоне других огней. Мощная спектральная яркость обеспечивает большую дальность видимости даже при неблагоприятных условиях, таких как туман, дождь, снегопад. Кстати, дальность обнаружения такого излучения в несколько раз превышает метеорологическую дальность видимости. Пилот видит лазерный луч в виде четкой прямой линии на фоне окружающего воздушного пространства.

Разработанная в 1970-е годы первая лазерная система «Глиссада», а чуть позже и ее модификация «Координата-Л» были признаны удовлетворительными по многим параметрам. Однако не были лишены недостатков, связанных с ненадежностью газоразрядных лазеров. В 2004 году система была модернизирована и получила название «Глиссада-М».

Для дальнейшей реализации проекта «Лазерная курсоглиссадная система посадки» научно-техническим центром Красногорского завода им. С.А Зверева был разработан технический проект курсоглиссадной системы на инжекционных лазерах, под шифром «ЛКГСП». Ее новое техническое исполнение холдинг «Швабе» недавно продемонстрировал на МАКС-2019.

Принцип работы

КГС состоит из двух радиомаяков: курсового (КРМ) и глиссадного (ГРМ).

Антенная система КРМ представляет собой многоэлементную антенную решётку, состоящую из линейного ряда направленных антенн метрового диапазона частот с горизонтальной поляризацией. Для расширения рабочего сектора радиомаяка до углов ±35° часто используется дополнительная антенная решётка. Диапазон рабочих частот КРМ 108—112 МГц (используется 40-канальная сетка частот, где каждой частоте КРМ поставлена в соответствие определённая частота ГРМ). КРМ размещают за пределами взлётно-посадочной полосы на продолжении её осевой линии. Его антенная система формирует в пространстве одновременно две горизонтальные диаграммы излучения. Первая диаграмма имеет один широкий лепесток, направленный вдоль осевой линии, в котором несущая частота промодулирована по амплитуде суммой сигналов с частотой 90 и 150 Гц. Вторая диаграмма имеет два узких противофазных лепестка по левую и правую сторону от осевой линии, в которых радиочастота промодулирована по амплитуде разностью сигналов с частотой 90 и 150 Гц, а несущая подавлена. В результате сложения сигнал распределяется в пространстве таким образом, что при полёте вдоль осевой линии глубина модуляции сигналов 90 и 150 Гц одинакова, а значит разность глубин модуляции (РГМ) равна нулю. При отклонении от осевой линии глубина модуляции сигнала одной частоты растёт, а другой — падает, следовательно, РГМ увеличивается в положительную или отрицательную сторону. При этом сумма глубин модуляции (СГМ) в зоне действия маяка поддерживается на постоянном уровне. Бортовое пилотажно-навигационное оборудование измеряет величину РГМ, определяя сторону и угол отклонения воздушного судна от посадочного курса.

Антенная система ГРМ представляет собой в простейшем случае решётку из двух разнесенных по высоте направленных антенн дециметрового диапазона с горизонтальной поляризацией (решётка «0»). Диапазон рабочих частот ГРМ 329—335 МГц. ГРМ размещают со стороны, противоположной участку застройки и рулёжным дорожкам, на расстоянии 120—180 м от оси ВПП напротив зоны приземления. Удаление ГРМ от порога ВПП определяется таким образом, чтобы при заданном угле наклона глиссады опорная точка (точка над торцом ВПП, через которую проходит прямолинейная часть глиссады) находилась на высоте 15±3 м для радиомаячных систем посадки I и II категории и 15+3−0 м для систем III категории. Диаграмма направленности антенной системы ГРМ формируется в результате отражения радиоволн от поверхности земли, поэтому к чистоте зоны, непосредственно прилегающей к антенной системе ГРМ, предъявляются особые требования. Чтобы уменьшить влияние неровностей подстилающей поверхности на диаграмму направленности, а, следовательно, и искривления линии глиссады, используется антенная решётка из трёх вертикально разнесенных антенн (решётка «M»). Она обеспечивает пониженную мощность излучения под малыми углами к горизонту. ГРМ использует тот же принцип работы, что и КРМ. Его антенная система формирует в пространстве одновременно две вертикальных диаграммы излучения, с одним широким лепестком и с двумя узкими — выше и ниже плоскости глиссады (плоскости нулевого значения РГМ). Пересечение плоскости курса и плоскости глиссады даёт линию глиссады. Линию глиссады можно назвать прямой только условно, так как в идеальном случае она представляет собой гиперболу, которая в дальней зоне приближается к прямой, проходящей через точку приземления. В реальных условиях из-за неровностей рельефа местности и препятствий в зоне действия радиомаяков линия глиссады подвержена искривлениям, величина которых нормируется для каждой категории системы посадки.

Угол наклона глиссады (УНГ) примерно равен 3°, но может зависеть от местности. Чем меньше УНГ, тем удобнее садиться самолёту, так как ниже вертикальная скорость. В России в аэропортах, где местность не мешает низкому заходу, используется УНГ 2°40′. В горах или если глиссада проходит над городом, УНГ больше. Например, в аэропорту Новосибирск Северный, который находится близко к центру города, глиссада, проходящая над лесом, наклонена под углом 2°40′ (уклон 4,7 %), а заход со стороны города производится под углом 3°40′ (наклон 6,4 %, в 1,5 раза больше). В аэропорту города Кызыла, в горной местности, УНГ равен 4° (7 %).

Глиссада
КРМ
ВПП
ГРМ
ВПРМ
УНГ
БПРМ
ДПРМ
Сигнал PAPI

Категории КГС

Стандартная КГС, которая классифицируется как КГС I категории, позволяет выполнять заходы на посадку при высоте принятия решения не ниже 60 м над уровнем ВПП и дальности видимости на ВПП (RVR, рассчитываемая по яркости боковых огней ВПП и огней приближения) 550 м (1800 фт) либо при метеорологической видимости 800 м (2700 фт) — если огни на ВПП отсутствуют или выключены.

Более сложные системы II и III категории позволяют выполнять посадку при меньшей видимости, но требуют специальной дополнительной сертификации самолёта и пилота.

Заходы по II категории позволяют выполнять посадку при высоте принятия решения 30 м (100 фт) и RVR 350 м (1200 фт).

При посадке по III категории самолёт приземляется с использованием системы автоматической посадки, высота принятия решения отсутствует, а RVR должна быть не ниже 250 м (700 фт) по категории IIIa, либо 50-250 м по категории IIIb. Каждая КГС, сертифицированная по III категории, имеет свои собственные установленные высоты принятия решения и минимумы. Некоторые КГС имеют сертификацию для посадок в условиях нулевой видимости (категория IIIc, также пишут Cat III C).

Системы II и III категорий должны иметь освещение осевой линии, зоны посадки и другие вспомогательные средства.

КГС должна выключаться в случае сбоев. С увеличением категории оборудование должно выключаться быстрее. Например, курсовой маяк I категории должен выключиться через 10 секунд после обнаружения сбоя, а маяк III категории должен выключиться менее чем через 2 секунды.

Ограничения и альтернативы

Директорные системы в самолётах (системы, определяющие местоположение относительно глиссады и показывающие его на приборах) чувствительны к отражениям сигналов КГС, возникающим из-за присутствия разных объектов в её области действия, например, домов, ангаров, а находящиеся вблизи радиомаяков самолёты и автомобили могут создавать серьёзные искажения сигналов. Земля под уклоном, холмы и горы и другие неровности местности также могут отражать сигнал и вызывать отклонения показаний приборов. Это ограничивает область надёжной работы КГС.

Также для нормальной работы КГС в аэропортах приходится вводить дополнительные ограничения передвижения самолётов на земле, чтобы они не затеняли и не отражали сигналы, а именно увеличивать минимальное расстояние между самолётом на земле и ВПП, закрывать некоторые рулёжные дорожки или увеличивать интервал между посадками, чтобы севший самолёт успел уехать из проблемной зоны, и следующий садящийся самолёт не испытывал радиопомех. Это сильно снижает пропускную способность аэропортов, когда им приходится работать в сложных метеоусловиях по II и III категориям.

Кроме того, КГС может служить только для прямых заходов, поскольку линия равной интенсивности маяков всего одна. В то же время, во многих аэропортах сложная местность требует более сложного захода, как, например, в аэропорту Инсбрука.

В 1970-е годы в США и Европе были приложены большие усилия по разработке и внедрению микроволновой системы посадки (MLS). Она не испытывает проблем с отражениями и точно определяет местоположение самолёта не только прямо перед ВПП, но и в любой точке вокруг. Это позволяет выполнять по ней непрямые заходы, уменьшить интервалы безопасности и поэтому увеличить пропускную способность аэропорта в сложных метеоусловиях. Однако авиакомпании и аэропорты не решались инвестировать средства во внедрение этой системы. Появление GPS окончательно остановило прогресс в области МСП[источник не указан 2470 дней].

Будущее

Развитие глобальной системы позиционирования GPS создало альтернативу традиционным средствам радионавигации в авиации. Однако сама по себе GPS, без вспомогательных средств, не достаточно точна́ даже в сравнении с КГС I категории. Рассматривались разные способы повышения точности: Wide Area Augmentation System (WAAS), её аналог Европейская служба геостационарного навигационного покрытия (EGNOS). Они могут предоставить навигацию соответствующую I категории.

Чтобы использовать GPS в условиях заходов по II и III категориям, требуется точность большая, чем у этих систем. Локальная наземная система (ЛККС) соответствует только I категории, и разрабатываемые системы II и III категорий могут включить её в себя. Эта техника, возможно, заменит КГС, хотя они, наверное, останутся в использовании как резервное средство на случай выхода из строя оборудования.

Европейская система Галилео также призвана давать достаточно точные данные, чтобы позволить выполнять автоматическую посадку.

Шасси, закрылки и экономика

21 сентября 2001 года самолет Ил-86, принадлежавший одной из российских авиакомпаний, произвел посадку в аэропорту Дубаи (ОАЭ), не выпустив шасси. Дело закончилось пожаром в двух двигателях и списанием лайнера — к счастью, никто не пострадал. Не было и речи о технической неисправности, просто шасси… забыли выпустить.

Глиссада
С все как прежде Современные лайнеры по сравнению с воздушными судами прошлых поколений буквально набиты электроникой. В них реализована система электродистанционного управления fly-by-wire (буквально «лети по проводу). Это означает, что рули и механизацию приводят в движение исполнительные устройства, получающие команды в виде цифровых сигналов. Даже если самолет летит не в автоматическом режиме, движения штурвала не передаются рулям непосредственно, а записываются в виде цифрового кода и отправляются в компьютер, который мгновенно переработает данные и отдаст команду исполнительному устройству. Для того, чтобы повысить надежность автоматических систем в самолете установлено два идентичных компьютерных устройства (FMC, Flight Management Computer), которые постоянно обмениваются информацией, проверяя друг друга. В FMC вводится полетное задание с указанием координат точек, через которые будет пролегать траектория полета. По этой траектории электроника может вести самолет без участия человека. Зато рули и механизация (закрылки, предкрылки, интерцепторы) современных лайнеров мало чем отличаются от этих же устройств в моделях, выпущенных десятилетия назад. 1. Закрылки. 2. Интерцепторы (спойлеры). 3. Предкрылки. 4. Элероны. 5. Руль направления. 6. Стабилизаторы. 7. Руль высоты.

К подоплеке этого авиапроисшествия имеет отношение экономика. Подход к аэродрому и заход на посадку связаны с постепенным уменьшением скорости воздушного судна. Поскольку величина подъемной силы крыла находится в прямой зависимости и от скорости, и от площади крыла, для поддержания подъемной силы, достаточной для удержания машины от сваливания в штопор, требуется площадь крыла увеличить. С этой целью используются элементы механизации — закрылки и предкрылки. Закрылки и предкрылки выполняют ту же роль, что и перья, которые веером распускают птицы, перед тем как опуститься на землю. При достижении скорости начала выпуска механизации КВС дает команду на выпуск закрылков и практически одновременно — на увеличение режима работы двигателей для предотвращения критической потери скорости из-за роста лобового сопротивления. Чем на больший угол отклонены закрылки/предкрылки, тем больший режим необходим двигателям. Поэтому чем ближе к полосе происходит окончательный выпуск механизации (закрылки/предкрылки и шасси), тем меньше будет сожжено топлива.

Технологии
Когда 3 мало, а 6 — уже много: почему у автомобиля 4 колеса

На отечественных воздушных судах старых типов была принята такая последовательность выпуска механизации. Сначала (за 20−25 км до полосы) выпускалось шасси. Затем за 18−20 км — закрылки на 280. И уже на посадочной прямой закрылки выдвигались полностью, в посадочное положение. Однако в наши дни принята иная методика. В целях экономии летчики стремятся пролететь максимальное расстояние «на чистом крыле», а затем, перед глиссадой, погасить скорость промежуточным выпуском закрылков, потом выпустить шасси, довести угол закрылков до посадочного положения и совершить посадку.

Глиссада
Схема захода На рисунке очень упрощенно показана схема захода на посадку и взлета в районе аэропорта. На самом деле схемы могут заметно отличаться от аэропорта к аэропорту, так как составляются с учетом рельефа местности, наличия вблизи высотных строений и запретных для полета зон. Иногда для одного и того же аэропорта действуют несколько схем в зависимости от метеоусловий. Так, например, в московском «Внуково» при заходе на полосу (ВВП 24) обычно используется т.н. короткая схема, траектория которой пролегает за пределами МКАД. Но в плохую погоду самолеты заходят по длинной схеме, и лайнеры пролетают над Юго-Западом Москвы.

Экипаж злополучного Ил-86 тоже воспользовался новой методикой и выпустил закрылки до шасси. Ничего не знавшая о новых веяниях в пилотировании автоматика Ил-86 тут же включила речевую и световую сигнализацию, которая требовала от экипажа выпустить шасси. Чтобы сигнализация не нервировала пилотов, ее просто отключили, как выключают спросонья надоевший будильник. Теперь напомнить экипажу, что шасси все-таки надо выпустить, было некому. Сегодня, правда, уже появились экземпляры самолетов Ту-154 и Ил-86 с доработанной сигнализацией, которые летают по методике захода на посадку с поздним выпуском механизации.

Что такое глиссада, значение слова

Определимся с понятием слова глиссада. Оно происходит от французского glissade – скользить, скольжение.

В авиации это траектория при заходе на посадку, по которой происходит снижение воздушного судна или любого другого летательного аппарата. Движения по ней приводит самолет в зону посадки. Для большинства аэродромов выход на глиссаду начинается на расстоянии 15-20 км от взлетно-посадочной полосы (ВПП). От диспетчера разрешение на посадку борт получает лишь тогда, когда он находится на этой траектории. Тогда же самолет выпускает шасси.

Одной из важных характеристик ВПП служит угол наклона глиссады (УНК) – угол между плоскостями глиссады и горизонтом. В зависимости от того, насколько точно выдержан этот угол, будет зависеть дальнейшие действия летчика – заход на второй круг или мягкое приземление. По рекомендации Международной организации гражданской авиации УНК равен 3º. В СССР было принято значение 2º40′. Современные аэродромы гражданской авиации –значение угла в пределах от 2º до 4º.

В этом режиме даже отказавший двигатель не снизит скорость воздушного судна, сохранит необходимую устойчивость и управляемость.

https://youtube.com/watch?v=1O8XRPYjZNs

По фактической погоде

В информационных сводках нередко можно услышать подобную фразу: «В связи с ухудшением метеоусловий в районе аэропорта N экипажи принимают решения о взлете и посадке по фактической погоде». Этот распространенный штамп вызывает у отечественных авиаторов одновременно смех и возмущение. Разумеется, никакого произвола в летном деле нет. Когда самолет проходит точку принятия решения, командир воздушного судна (и только он) окончательно объявляет, станет ли экипаж сажать лайнер или посадка будет прервана уходом на второй круг. Даже при наилучших погодных условиях и отсутствии препятствий на полосе КВС имеет право отменить посадку, если он, как гласят Федеральные авиационные правила, «не уверен в благополучном исходе посадки». «Уход на второй круг сегодня не считается просчетом в работе пилота, а наоборот, приветствуется во всех допускающих сомнения ситуациях. Лучше проявить бдительность и даже пожертвовать каким-то количеством сожженного топлива, чем подвергнуть даже малейшему риску жизнь пассажиров и экипажа», — объяснил нам Игорь Бочаров, начальник штаба летной эксплуатации авиакомпании «S7 Airlines».

Глиссада
Курсо-глиссадная система Курсо-глиссадная система состоит из двух частей: пары курсовых и пары глиссадных радиомаяков. Два курсовых радиомаяка находятся за ВПП и излучают вдоль нее направленный радиосигнал на разных частотах под небольшими углами. На осевой линии ВПП интенсивность обоих сигналов одинакова. Левее и правее этой прямой сигнал одного из маяков сильнее другого. Сравнивая интенсивность сигналов, радионавигационная система самолета определяет, с какой стороны и как далеко он находится от осевой линии. Два глиссадных маяка стоят в районе зоны приземления действуют аналогичным образом, только в вертикальной плоскости.

С другой стороны, в принятии решений КВС жестко ограничен существующим регламентом процедуры посадки, и в пределах этого регламента (кроме экстренных ситуаций вроде пожара на борту) у экипажа нет никакой свободы принятия решений. Существует жесткая классификация типов захода на посадку. Для каждого из них прописаны отдельные параметры, определяющие возможность или невозможность такой посадки в данных условиях.

Например, для аэропорта «Внуково» инструментальный заход на посадку по неточному типу (по приводным радиостанциям) требует прохождения точки принятия решений на высоте 115 м при горизонтальной видимости 1700 м (определяется метеослужбой). Для совершения посадки до ВПР (в данном случае 115 м) должен быть установлен визуальный контакт с ориентирами. Для автоматической посадки по II категории ИКАО эти значения значительно меньше — они составляют 30 м и 350 м. Категория IIIс допускает полностью автоматическую посадку при нулевой горизонтальной и вертикальной видимости — например, в полном тумане.

Заход на посадку

Заключительный и наиболее сложный этап выполнения полета, перед осуществлением посадки самолета. При этом пилот должен вывести летательный аппарат на траекторию – предпосадочную прямую – ведущую непосредственно в точку приземления.

Этот этап может быть осуществлен несколькими способами.

Визуальным (ВЗП). При этом для экипажа ориентиром является естественная линия горизонта, ориентиры на местности и наблюдаемая ВПП. Проводится, как правило, согласно схемам, определенных инструкциями по осуществлению полетов. Разрешается диспетчером после того, как осуществлен визуальный контакт с полосой, самолет находится в зоне визуального маневрирования.

Глиссада

По бортовым или аэродромным радионавигационным приборам. Такой способ обеспечивает заход на посадку при неблагоприятных метеоусловиях, когда визуальным методом выполнить безопасный маневр не получится. Поскольку при таком режиме экипаж строго соблюдает установленный и много раз проверенный алгоритм действий, поддерживающий заданные параметры полета и осуществляющий взаимоконтроль всех систем, он практически исключает грубые ошибки, приводящие к потере скорости и сваливанию.

Проанализировав случаи аварий, связанные с приземлением летательных аппаратов мимо ВПП или выкатывания судна за его пределы, видно, что они следствие некоординированного изменения направления на высоте принятия решения (ВПР). Очевидно, что в этом случае борт не был готов к посадке. В каждом случае происходило несоответствие ожидаемого поведения – судно не подчинялось управлению, осуществляя произвольное движение. Это объясняется резким увеличением лобового сопротивления судна, т.к. создаётся большой угол скольжения. Происходит уменьшение поступательной скорости, которая влияет на работу руля, подъемной силы. Самолет уходит с траектории.

Движение летательного аппарата, не контролируемые пилотом, максимальное отклонение рулей приводит к эффекту их «затенения», изменяет усилия на обратные.

https://youtube.com/watch?v=STK89-0b444

Несанкционированное изменение траектории движения по предпосадочной прямой приводит к таким последствиям:

Отклонения курса по вертикальной (крен) и горизонтальной (тангаж) плоскости;
Изменяется усилия на органах управления на противоположные;
Снижение скорости полета, как следствие – уход летательного аппарата с траектории глиссады;
Из-за возникновения крена отвлечено внимание летчика;
Возникает опасность повреждения крыла о препятствие на малой высоте, т.к. выход из не контролируемого разворота происходит при большом угле крена.. Поэтому при полете по глиссаде на ВПР исправление отклонения по курсу возможно в границах, требования которых определены требованиями руководящих документов, строго используя координированную технику пилотирования

В технические характеристики лайнера заложена возможность исправления отклонений с помощью разворота – координированного и подконтрольного

Поэтому при полете по глиссаде на ВПР исправление отклонения по курсу возможно в границах, требования которых определены требованиями руководящих документов, строго используя координированную технику пилотирования. В технические характеристики лайнера заложена возможность исправления отклонений с помощью разворота – координированного и подконтрольного.

Если все принятые действия не привели к исправлению траектории движения воздушного корабля, то командир принимает решение захода на второй круг и более тщательной подготовки к заходу на посадку.

Компоненты

Курсовой и глиссадный маяки

Глиссада

Глиссадный радиомаяк в международном аэропорту Ганновер—Лангенхаген (HAJ)

Кроме навигационных сигналов, курсовой маяк передаёт свой идентификационный код, две или три буквы азбукой Морзе. Это позволяет пилоту или штурману удостовериться, что он настроился на нужную КГС, о чём обязательно сообщает экипажу. Глиссадный маяк не передаёт идентификационного сигнала. Существует возможность использовать приемник КГС на самолёте для получения сообщений от диспетчера.

В старых КГС курсовые радиомаяки менее направленно излучают сигнал, и его можно принимать также и позади маяка. Это позволяет ориентироваться хотя бы по курсу при заходе с обратной стороны (если на полосе стоит только одна КГС). Также существует опасность захвата паразитного лепестка и входа в ложную глиссаду. Ввиду этого экипаж воздушного судна осуществляет комплексное самолётовождение, что подразумевает наблюдение за работой одних навигационных систем с помощью других. Например, если при захвате ложной глиссады и снижении на высоту пролёта ДПРМ экипаж не отметил пролёта маркера, снижение обязательно прекращается, самолёт переводится в горизонтальный полет или набор высоты.

Курсовой радиомаяк (КРМ) представляет собой наземное радиотехническое устройство, излучающее в пространство радиосигналы, содержащие информацию для управления воздушным судном относительно посадочного курса при выполнении захода на посадку до высоты принятия решения. Антенна КРМ устанавливается на продолжении осевой линии ВПП на расстоянии 425—1200 м от ближнего торца ВПП со стороны противоположной направлению захода на посадку, боковое смещение антенны КРМ от продолжения осевой линии ВПП не допускается.

Глиссадный радиомаяк (ГРМ) представляет собой наземное радиотехническое устройство, излучающее в пространство радиосигналы, содержащие информацию для управления воздушным судном в вертикальной плоскости относительно установленного угла наклона линии глиссады при выполнении захода на посадку до высоты принятия решения. Антенна ГРМ устанавливается сбоку от ВПП на расстоянии 120—180 м от её оси и 200—450 м от торца ВПП со стороны захода на посадку.

Маркерные радиомаяки

Основная статья: Маркерный радиомаяк

Маркерные радиомаяки работают на частоте 75 МГц, излучая сигнал узким пучком вверх. Когда самолёт пролетает над маркерным маяком, включается система оповещения — мигает специальный индикатор на приборной панели и издаётся звуковой сигнал. Ближний и дальний маркерные маяки в отечественных аэропортах обычно устанавливаются вместе с приводными радиостанциями. Данные сооружения называются БПРМ (ближняя приводная радиостанция с маркером) и ДПРМ (дальняя приводная радиостанция с маркером) соответственно.

Дальний маркерный маяк

Дальний маркерный радиомаяк устанавливается на расстоянии 3,5 — 4 км от торца ВПП ± 75 м. В этой точке самолёт, двигаясь на высоте, указанной в схеме захода, (примерно 210—220 метров) должен проконтролировать работу КГС, текущую высоту полёта и продолжить снижение. Частота модуляции данного маяка — 400 Гц, а код модуляции представляет собой серию из двух «тире» кода Морзе.

Ближний маркерный маяк

Ближний маяк устанавливается в том месте, где высота глиссады обычно равна высоте принятия решения. Это соответствует удалению в 1050 ± 75 метров от торца полосы. Таким образом сигнализация пролёта данной точки дополнительно информирует пилотов, что они находятся в непосредственной близости от полосы и по-прежнему находятся на посадочной прямой. Частота модуляции данного маяка — 1300 Гц, а код модуляции — комбинация из шести точек и двух тире Азбуки Морзе.

Внутренний маркерный маяк

Внутренний маяк используется редко, устанавливается для дополнительного сигнала о проходе над торцом ВПП в условиях низкой видимости. Обычно это место, где самолёт достигает точки минимума по категории II КГС (примерно 10-20 м).

Мониторинг

Индикатор прибора слепой посадки ПСП-48

Любое отклонение в работе КГС от нормы сразу же влияет на приборы в самолёте, заходящем на посадку, и может привести к опасным отклонениям от правильного курса и высоты. Поэтому специальное оборудование следит за работой КГС и, если некоторое время (секунды) отклонение превышает норму, система выключается, и подаётся сигнал об аварии, либо система перестаёт передавать свой идентификатор и навигационные сигналы. В любом случае на приборах пилот увидит флажок, сообщающий о неработающей КГС.

При использовании КГС на аэродроме существуют специальные «зоны КГС». Руление воздушного судна в зоне излучения КГС возможно только при отсутствии на глиссаде другого воздушного судна, осуществляющего заход на посадку.