Дискретизация сигнала (стр. 1 из 2)

Введение

В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.

Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации. Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.

Виды квантования

Равномерное (однородное) квантование — разбиение диапазона значений отсчётов сигнала y{\displaystyle y} на отрезки равной длины и замена этих значений на ближайший уровень квантования yq{\displaystyle y_{q}}. В этом случае возможны два варианта квантования:

1. Если значения сигнала находятся в интервале ,h{\displaystyle }, где h{\displaystyle h} — шаг квантования, то они округляются до уровня h2{\displaystyle h/2} (midrise — характеристика квантования с нулём на границе шага квантования):

yq=(⌊yh⌋+0.5)⋅h{\displaystyle y_{q}=\left(\left\lfloor {y \over h}\right\rfloor +0.5\right)\cdot h}

2. Если значения сигнала находятся в интервале −h2,h2{\displaystyle [-h/2,h/2]}, то они округляются до нулевого уровня (midtread — характеристика квантования с нулём в центре шага квантования):

yq=⌊yh+0.5⌋⋅h{\displaystyle y_{q}=\left\lfloor {y \over h}+0.5\right\rfloor \cdot h},

где ⌊.⌋{\displaystyle \left\lfloor {.}\right\rfloor } — округление до ближайшего меньшего целого.

После дискретизации и квантования получается цифровой сигнал. Затем уровень квантования yq{\displaystyle y_{q}} заменяется набором чисел. Для квантования в двоичном коде диапазон изменения сигнала от минимального значения ymin{\displaystyle y_{\min }} до максимального значения ymax{\displaystyle y_{\max }} делится на 2n{\displaystyle 2^{n}} уровней квантования, где n{\displaystyle n} — разрядность квантования. Величина получившегося интервала между уровнями (шаг квантования):

h=ymax−ymin2n.{\displaystyle h={\frac {y_{\max }-y_{\min }}{2^{n}}}.}

Каждому уровню присваивается n{\displaystyle n}-разрядный двоичный код — номер уровня, записанный двоичным числом. Каждому отсчёту сигнала присваивается код ближайшего к нему уровню. Таким образом, после дискретизации и квантования аналоговый сигнал представляется последовательностью двоичных чисел, соответствующих значениям сигнала в определённые моменты времени, то есть двоичным сигналом. При этом каждое двоичное число представляется последовательностью импульсов высокого (1) и низкого (0) уровня. Разрядность квантования звука обычно выбирается равной от 8 до 32 битов (сравнение цифровых аудиоформатов), но обычно 16 или 24 бита.

Неравномерное квантование — квантование, при котором разбиение диапазона значений сигнала производится на отрезки неравной длины. Применяется с целью повышения точности квантования в случае, когда распределение значений сигнала неравномерное, например при квантовании звука. При этом уровни квантования должны располагаться чаще в тех областях, где значения сигнала более вероятны. При квантовании речевых сигналов чаще используется компрессор, увеличивающий малые значения сигнала и уменьшающий большие значения, и последующее равномерное квантование.

Теория

Дискретизация сигнала (стр. 1 из 2)
Дискретизация гребёнкой Дирака

В математических терминах — дискретизация это умножение непрерывной функции s(t){\displaystyle s(t)} на функцию, называемую гребень Дирака ΔT(t) =def ∑k=−∞∞δ(t−kT){\displaystyle \Delta _{T}(t)\ {\stackrel {\mathrm {def} }{=}}\ \sum _{k=-\infty }^{\infty }\delta (t-kT)} где T{\displaystyle T} — константа — период дискретизации и δ(t){\displaystyle \delta (t)} — дельта-функция Дирака:

sa(t)=s(t)⋅∑n=−∞∞δ(t−nT).{\displaystyle s_{\mathrm {a} }(t)=s(t)\cdot \sum _{n=-\infty }^{\infty }\delta (t-nT).}

Преобразование Фурье дискретной функции sa(t){\displaystyle s_{\mathrm {a} }(t)} даёт её спектр Sa(f){\displaystyle S_{\mathrm {a} }(f)}. Согласно теореме Котельникова, если спектр Sa(f){\displaystyle S_{\mathrm {a} }(f)} исходной функции ограничен, то есть спектральная плотность нулевая свыше некоторой частоты fmax{\displaystyle f_{max}}, то исходная функция однозначно восстановима по совокупности её выборок, взятых с частотой дискретизации 1T≥2fmax{\displaystyle 1/T\geq 2f_{max}}.

Для абсолютно точного восстановления необходимо подать на вход идеального фильтра нижних частот последовательность бесконечно коротких импульсов каждый с площадью равной значению выборки.

Практически невозможно идеально точно восстановить реальные сигналы по выборкам, так как во-первых, не существует сигналов с ограниченным спектром, ибо реальные сигналы ограничены во времени, что обязательно даёт спектр бесконечной ширины. Во-вторых, физически нереализуем идеальный фильтр низких частот (sinc-фильтр), в третьих, невозможны бесконечно короткие импульсы с конечной площадью.

О субдискретизации

Часто бывает, что, например, в системах связи, полезный сигнал занимает только узкую часть доступной полосы частот. Это относится к дискретизации сигнала на промежуточной частоте в приемниках. Выше мы рассматривали случаи дискретизации низкочастотных сигналов, которые полностью находятся в первой зоне Котельникова-Найквиста. На следующем рисунке показан случай, когда полоса частот полезного сигнала ограничена первой зоной дискретизации, а на выходе дискретизатора в остальных зонах появляются образы полезного сигнала, как уже об этом говорилось выше.

Дискретизация сигнала (стр. 1 из 2)

Теперь взглянем на случай, когда полоса сигнала находится во второй зоне Котельникова-Найквиста.

Дискретизация сигнала (стр. 1 из 2)

Именно такая ситуация возникает при обработке сигнала радиоприемника, где сигнал переносится на промежуточную частоту и гарантируется, что сигнал за пределами полосы пропускания фильтра промежуточной частоты отсутствует. Дадим еще раз определение субдискретизации:

Образ сигнала в первой зоне Котельникова-Найквиста содержит всю информацию об исходном сигнале, кроме его первоначального положения на оси частот. Для четных зон Котельникова-Найквиста, порядок частот в спектре образа сигнала в первой зоне обратный и это следует учитывать при обработке.

Дискретизация сигнала (стр. 1 из 2)

Рассмотрим образ сигнала в третьей зоне Котельникова-Найквиста, здесь уже на выходе дискретизатора в первой зоне, обращения частот не происходит. Таким образом, полоса частот сигнала, подлежащая дискретизации может лежать в любой зоне Котельникова-Найквиста и сигнала в первой зоне является точным образом исходного сигнала, за исключением обращения частот, которое проиходит в четных зонах Котельникова-Найквиста. Дадим еще одну формулировку:

В данной формулировке нет никакого упоминания о положении сигнала в частотном спектре относительно частоты дискретизации, главное, чтобы он был ограничен одной зоной Котельникова-Найквиста и его частотные компоненты не должны выходить за частоту Fs/2, что является задачей для антиалайзингового фильтра, который размещается до аналого-цифрового преобразователя.

Данная техника дискретизации используется в приемной аппаратуре, как я уже писал выше. Процесс эквивалентен аналоговой демодуляции с последующей цифровой обработкой сигнала. Это позволяет избавиться от демодулятора промежуточной частоты, однако накладывает определенные требования на производительность АЦП, который должен работать в более высокочастотных зонах Котельникова-Найквиста и вносить минимальные искажения во входной сигнал, именно такие АЦП используются для субдискретизации.

В следующей статье из данной серии рассмотрим некоторые практические примеры выбора частоты дискретизации, что-нибудь посчитаем, попробуем задействовать для этих целей GNU Octave, о котором я уже писал ранее. А пока подписывайтесь на обновления блога в Твиттер и ВК, а также заходите в наш чат Телеграм.

  1. Айфичер Э., Джервис Б. — Цифровая обработка сигналов. Практический подход (изд.2), 2008 г.
  2. Статья «Дискретизация сигнала на промежуточной частоте (субдискретизация)», 2013 г.
  3. Солонина А. Цифровая обработка сигналов в зеркале MATLAB, 2018 г.

Что это?

Дискретизация сигнала (стр. 1 из 2)

Что такое дискретизация? Это нежелательный эффект, который приводит к тому, что качество фотографии заметно ухудшается. Данное явление может быть ассоциировано с любым устройством или же процессом, в котором информация подразделяется на несколько отдельных отсчетов. В данном случае дискретизация может рассматриваться в качестве типа интерференционной картины, если есть определенное соотношение между частотой данного явления и определенной периодической структурой в данных.

Глаз человека постоянно стремится к тому, чтобы воспринимать определенное соотношение в качестве интерференционной картины, которая сможет заслонить собой реальный смысл того или иного изображения. Рассматривая примеры того, что такое дискретизация, стоит выделить муар, который представляет собой не совсем точный ее эффект, но при этом может показать, каким образом человек вводится в заблуждение в том случае, когда два паттерна начинают между собой взаимодействовать, образуя третий.

Постановка задачи

Пусть имеется непрерывный сигнал x(t){\displaystyle x(t)\!},заданный на интервале ,+∞){\displaystyle =x(nT),n=0,1,2…\!}.Далее, выбирается формат оцифровки r{\displaystyle r\,\!}. Обычно он бывает кратным 8, хотя это необязательно. Предположим что существует такое число M{\displaystyle M\,\!}, что выполнены неравенства:−M≤yn≤M{\displaystyle -M\leq y\leq M\!} для всех n{\displaystyle n\!}.Интервал −M,M{\displaystyle \!} разбивается на 2n{\displaystyle 2^{n}\!} частей. После этого каждое значение yn{\displaystyle y\!} заменяеться новой последовательностью zn{\displaystyle z\!} , но теперь каждый новый член последовательности принимает значение из интервала,2n−1{\displaystyle \!} .При желании вместо указанного представления можно перейти к представлению сигнала целыми числами со знаком.

На каждом из упомянутых шагов происходит искажение сигнала. Первая задача цифровой обработки заключается в оценке искажения исходного сигнала. Дальнейшая обработка состоит в извлечении из полученного сигнала нужной информации и подавлении шумов. Это осуществляется с помощью цифровой фильтрации. Даже оцифрованный сигнал занимает много места, и следующий шаг обработки заключается в сжатии сигнала. Обычно имеется ввиду сжатие с потерей информации

Здесь важно установить критерий допустимой потери информации. В зависимости от выбранного критерия выбирается способ сжатия

Хотя последовательность бесконечна, в реальных условиях мы имеем дело лишь с конечными последовательностями. В этой связи нужна оценка потерь, связанных с усечением последовательностей.

Дискретизация в современных фотоаппаратах

Дискретизация сигнала (стр. 1 из 2)

В современных цифровых устройствах эффект дискретизации вызван тем, что информация разбивается на несколько отсчетов с регулярным интервалом. В частности, одним из паттернов в данном случае будет расположение пикселей на матрице, вторым паттерном будут любые элементы на снимке, которые могут повторяться на большой области или же которые изменяются через определенное количество пикселей в поперечном или же продольном направлении.

Для тех, кто не понял, что такое дискретизация и когда она возникает, можно привести конкретный пример. Когда в наличии есть недостаточное количество пикселей для того, чтобы передать достоверную информацию со снимка, то в таком случае он делается в не самом лучшем качестве. В стандартном варианте достаточно было бы просто выбрать более высокое разрешение, гарантируя таким образом обеспечение нужного количества пикселей для передачи деталей не снимке с определенной точностью, а если бы число пикселей было бы недостаточным, то мы могли бы просто увидеть небольшое количество элементов снимка.

Однако на самом деле это не совсем так. Теория дискретизации гласит о том, что в действительности ситуация является гораздо более негативной, и если нам не будет хватать количества пикселей для того, чтобы сделать определенный снимок, то в таком случае качество изображения будет постоянно ухудшаться.

1.1 Дискретизация

Дискретизация — преобразование непрерывной функции в дискретную. Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных. При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал. Обратный процесс называется восстановлением. При дискретизации только по времени, непрерывный аналоговый сигнал заменяется последовательностью отсчётов, величина которых может быть равна значению сигнала в данный момент времени. Возможность точного воспроизведения такого представления зависит от интервала времени между отсчётами Δt. Согласно теореме Котельникова:

где

Как это влияет на изображение?

Дискретизация сигнала (стр. 1 из 2)

Конечно, повторяющиеся и регулярные структуры линий достаточно редко можно встретить на снимках различных природных объектов — их присутствие часто ограничивается снимками разнообразных искусственных сооружений, таких как здания и прочее. Однако в любом случае глубина дискретизации может быть внушительной, поэтому этого эффекта всегда стоит избегать, занимаясь съемкой любых объектов.

При этом стоит отметить тот факт, что качество изображений может быть абсолютно разным даже в том случае, если они имеют одинаковое количество пикселей. Ведь, помимо всего прочего, разница между снимками может заключаться также в том, каким именно образом они были получены. К примеру, в одном случае снимок может быть несколько смягчен путем пропуска его через низкочастотный фильтр для получения промежуточных значений пикселей перед тем, как уменьшить размер, в то время как другое изображение может просто уменьшаться в размере, не внося в него при этом никаких дополнительных изменений и не получая промежуточных значений на границах объектов, где наблюдаются слишком резкие изменения яркости.

2.1 Аналоговый сигнал

Аналоговый сигнал — сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Различают два пространства сигналов — пространство L (непрерывные сигналы), и пространство l (L малое) — пространство последовательностей. Пространство l (L малое) есть пространство коэффициентов Фурье (счетного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L — есть пространство непрерывных по области определения (аналоговых) сигналов. При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

· прямая: электрическое напряжение

· окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала

· отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона — о быстрых изменениях давления в звуковой волне, и т.п.

Классификация сигналов

По физической природе носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

и другие;

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.

В зависимости от функции, описывающей параметры сигнала, выделяют:

  • непрерывные (аналоговые),
  • непрерывно-квантованные,
  • дискретно-непрерывные и
  • дискретно-квантованные сигналы.

Непрерывный (аналоговый) сигнал

Аналоговый сигнал

Основная статья: Аналоговый сигнал

Большинство сигналов имеют непрерывную зависимость от независимой переменной (например, изменяются непрерывно во времени) и могут принимать любые значения на некотором интервале. «Сигналы в непрерывном времени и с непрерывным диапазоном амплитуд также называются аналоговыми сигналами». Аналоговые сигналы (АС) оказывается возможным описать некоторой непрерывной математической функцией времени.

Пример АС — гармонический сигнал: s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в цифровую систему для обработки невозможно, так как на любом интервале времени он может иметь бесконечное множество значений, и для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому очень часто необходимо преобразовывать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Среди экспертов существует мнение, что термин «аналоговый сигнал» следует считать неудачным и устаревшим, а вместо него следует использовать термин «непрерывный сигнал».

Дискретно-непрерывный (дискретный) сигнал

Дискретный сигнал

Основная статья: Частота дискретизации

«Дискретные сигналы (сигналы в дискретном времени) определяются в дискретные моменты времени и представляются последовательностью чисел».

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени ti (где i — индекс). Обычно промежутки времени между последовательными отсчётами (Δti = ti − ti−1) постоянны; в таком случае, Δt называется интервалом дискретизации. Сами же значения сигнала x(t) в моменты измерения, то есть xi = x(ti), называются отсчётами.

Непрерывно-квантованный сигнал

Квантованный сигнал

Основные статьи: Квантование (обработка сигналов) и Разрядность

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N−1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

В соответствии с ГОСТ 26.013-81, такие сигналы обозначены термином «многоуровневый сигнал».

Дискретно-квантованный (цифровой) сигнал

Цифровой сигнал

Основная статья: Цифровой сигнал

К цифровым сигналам относят те, у которых дискретны как независимая переменная (например, время), так и уровень.

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине, называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Последовательность таких чисел и будет являться цифровым сигналом.

Применение

Все сигналы в природе по сути аналоговые. Для цифровой обработки сигнала, хранения его и передачи в цифровом виде аналоговые сигналы предварительно оцифровываются. Оцифровка включает дискретизацию и квантование по уровню, производимую с помощью АЦП. После цифровой обработки, передачи, хранения цифровых данных, кодирующих сигнал, часто необходимо обратное преобразование цифрового образа сигнала в аналоговый сигнал. Например, звуковоспроизведение аудиозаписей с компакт-диска.

Также дискретизация применяется в системах аналоговой импульсной модуляции.

Практически восстановление аналогового сигнала по совокупности выборок производится с той или иной степенью точности, причём точность восстановления тем выше, чем выше частота дискретизации и число уровней квантования каждой выборки. Но чем больше частота дискретизации и число уровней квантования, тем больше требуется ресурсов для обработки, хранения, передачи оцифрованных данных. Поэтому частоту дискретизации и разрядность АЦП практически выбирают исходя из разумного компромисса.

Например, для цифровой передаче голоса для хорошей разборчивости речи достаточна частота дискретизации 8 кГц, высококачественное воспроизведение музыкальных произведений с компакт-дисков в современном стандарте производится с частотой дискретизации 48 кГц, что обеспечивает высококачественное воспроизведение звука во всей полосе слышимых частот 20 Гц — 20 кГц.

Оцифровка телевизионного видеосигнала с полосой частот 6 МГц производится с частотой дискретизации свыше 10 МГц.

Дискретизация звука

Дискретизация сигнала (стр. 1 из 2)

Дискретизация звука – это фильтрация звуковой волны перед тем, как она будет сохранена в звуковой файл. Другими словами, в конечном файле будет не точная копия звуковой волны, а только приблизительная. С одной стороны, дискретизация звука обеспечивает определенное снижение объема сохраняемого файла, но с другой есть масса звуковых колебаний, которые не обязательно сохранять на жестком диске.

Такая фильтрация звука называется «частота дискретизации». При этом стоит отметить, что на самом деле только в природе присутствует звук без этого эффекта, хоть и немногие об этом знают. Частота дискретизации – это наложение определенной сетки на звуковую волну, а также запись только определенных ключевых элементов.

Производить запись полностью всей звуковой волны было бы достаточно сложно. Именно по этой причине гораздо чаще можно встретить такую ситуацию, когда производилась двухканальная звукозапись с частотой дискретизации 44.1 kHz. Последняя выбирается наиболее часто, так как это самый оптимальный параметр.

В принципе, рассматривая звуковую обработку, нужно уделить особенное внимание таким параметрам, как глубина кодирования и частота дискретизации, ведь чем эти показатели выше, тем больше цифровой сигнал будет соответствовать аналоговому

Сколько пикселей нужно?

Дискретизация сигнала (стр. 1 из 2)

Возьмем в качестве примера ситуацию, когда на снимке присутствует просто 20 черных и белых линий, каждая из которых имеет ширину 5 пикселей. В данном случае, если на каждой линии будет обеспечен хотя бы один пиксель, то снимок может быть записан. Естественно, если пиксели не будут попадать четко в центр каждой линии, то в таком случае каждый пиксель получится серым, а не белым или черным, а его оттенок уже непосредственно будет зависеть от того, как пиксель располагается относительно линий.

Если на снимке количество пикселей будет уменьшаться, то в таком случае некоторые из них начнут оказываться между линиями, вследствие чего на изображении появится вышеуказанный паттерн, который будет постоянно изменяться в зависимости от того, в каком соотношении находится интервал между линиями и число пикселей. Конечно, такое изображение уже не будет являться точным воспроизведением оригинала, так как регулярная структура линий будет уже заметно нарушена. Именно это явление и принято в профессиональных кругах называть «дискретизация данных».

Что такое муар?

Дискретизация сигнала (стр. 1 из 2)

Муар представляет собой непонятный волнообразный узор, который изначально не присутствовал на объекте съемки. Данный эффект чаще всего возникает на различных изображениях, которые получаются при помощи цифровых устройств. И заключается проблема здесь в том, что узор объекта накладывается на узор размещения пикселей на матрице, вследствие чего появляется третий, который и называется муаром.

В преимущественном большинстве случаев этот эффект возникает на детализированных высококонтрастных изображениях, которые не соответствуют изначально настроенному разрешению датчиков. В частности, его достаточно часто можно встретить в том случае, если снимаются такие объекты, как волосы или же ткани, а также сюжеты, в которых содержится большое количество повторяющихся деталей. Зачастую муар невозможно встретить в природе, так как он возникает на изображениях, которые получаются при помощи цифровой фотокамеры или же впоследствии неправильного сканирования.

Достаточно часто в современных цифровых фотокамерах для того, чтобы снизить данный эффект, применяется специализированный оптический низкочастотный фильтр, поэтому, если вы действительно собираетесь профессионально заниматься фотографией, то в таком случае вам следует обязательно задуматься о модели с этой функцией, которая сможет обеспечить должное качество вне зависимости от вторичных условий.

Теория

Дискретизация сигнала (стр. 1 из 2)

Дискретизация гребёнкой Дирака

В математических терминах — дискретизация это умножение непрерывной функции s(t){\displaystyle s(t)} на функцию, называемую гребень Дирака ΔT(t) =def ∑k=−∞∞δ(t−kT){\displaystyle \Delta _{T}(t)\ {\stackrel {\mathrm {def} }{=}}\ \sum _{k=-\infty }^{\infty }\delta (t-kT)} где T{\displaystyle T} — константа — период дискретизации и δ(t){\displaystyle \delta (t)} — дельта-функция Дирака:

sa(t)=s(t)⋅∑n=−∞∞δ(t−nT).{\displaystyle s_{\mathrm {a} }(t)=s(t)\cdot \sum _{n=-\infty }^{\infty }\delta (t-nT).}

Преобразование Фурье дискретной функции sa(t){\displaystyle s_{\mathrm {a} }(t)} даёт её спектр Sa(f){\displaystyle S_{\mathrm {a} }(f)}. Согласно теореме Котельникова, если спектр Sa(f){\displaystyle S_{\mathrm {a} }(f)} исходной функции ограничен, то есть спектральная плотность нулевая свыше некоторой частоты fmax{\displaystyle f_{max}}, то исходная функция однозначно восстановима по совокупности её выборок, взятых с частотой дискретизации 1T≥2fmax{\displaystyle 1/T\geq 2f_{max}}.

Для абсолютно точного восстановления необходимо подать на вход идеального фильтра нижних частот последовательность бесконечно коротких импульсов каждый с площадью равной значению выборки.

Практически невозможно идеально точно восстановить реальные сигналы по выборкам, так как во-первых, не существует сигналов с ограниченным спектром, ибо реальные сигналы ограничены во времени, что обязательно даёт спектр бесконечной ширины. Во-вторых, физически нереализуем идеальный фильтр низких частот (sinc-фильтр), в третьих, невозможны бесконечно короткие импульсы с конечной площадью.