Umts

Модемные устройства

Доступ пользователей к услуге передачи данных сети UMTS может обеспечиваться вне зависимости от типа используемого компьютера, путём применения шлюза доступа к сети (cellular router), использующего интерфейс PCMCIA либо USB. Часть программного обеспечения устанавливается автоматически при обнаружении операционной системой модема, и не требует дополнительных знаний по настройке подключения к сети.

Использование мобильного терминала, имеющего доступ к сетям 3G, в качестве маршрутизатора(модема)позволяет установить соединение с сетью Интернет посредством Bluetooth или USB ноутбукам самых разных марок и производителей.

Взаимодействие сетей и международный роуминг

UMTS и GSM задействуют различные механизмы на уровне воздушного интерфейса, и потому не являются совместимыми. Однако последние разработки среди продаваемых на территории Европы, США, Северной Африки и большей части Азии мобильных терминалов и карт доступа UMTS позволяют работать в сетях обоих стандартов. Если абонент UMTS выходит из зоны действия UMTS, его терминал автоматически переключается на приём и посылку сигналов в формате GSM (даже если сети обслуживаются разными операторами связи). Вместе с тем, мобильные терминалы стандарта GSM не могут использоваться в сетях UMTS.

Дополнительные характеристики

Сети нового поколения характеризуются наличием функции QoS с набором приоритетов: потоковый, разговорный, фоновый и интерактивный. Как уже было сказано, при переходе к сетям 3G используется UMTS. Что это, было описано достаточно подробно

Важно отметить, что окончательная реализация такого перехода требует замены как абонентских терминалов, так и подсистем базовых станций. Помимо этого, требуется заменить большую часть оборудования, используемого на уровне опорных сетей в настоящий момент. Архитектура сети существенно отличается наличием разделения коммутатора на два независимых уровня – коммутации и обработки сигнализации с контролем услуг

Это все является свидетельством того, что для последующего перехода к сетям нового поколения потребуется провести модернизацию подсистем базовых станций и абонентских терминалов. Новые диапазоны UMTS и реализация всех этих целей потребуют создания электронных компонентов и привлечения огромных инвестиций

Архитектура сети существенно отличается наличием разделения коммутатора на два независимых уровня – коммутации и обработки сигнализации с контролем услуг. Это все является свидетельством того, что для последующего перехода к сетям нового поколения потребуется провести модернизацию подсистем базовых станций и абонентских терминалов. Новые диапазоны UMTS и реализация всех этих целей потребуют создания электронных компонентов и привлечения огромных инвестиций.

Взаимодействие сетей и международный роуминг

UMTS и GSM задействуют различные механизмы на уровне воздушного интерфейса, и потому не являются совместимыми. Однако последние разработки среди продаваемых на территории Европы, США, Северной Африки и большей части Азии мобильных терминалов и карт доступа UMTS позволяют работать в сетях обоих стандартов. Если абонент UMTS выходит из зоны действия UMTS, его терминал автоматически переключается на приём и посылку сигналов в формате GSM (даже если сети обслуживаются разными операторами связи). Вместе с тем, мобильные терминалы стандарта GSM не могут использоваться в сетях UMTS.

Модемные устройства

Доступ пользователей к услуге передачи данных сети UMTS может обеспечиваться вне зависимости от типа используемого компьютера, путём применения шлюза доступа к сети (cellular router), использующего интерфейс PCMCIA либо USB. Часть программного обеспечения устанавливается автоматически при обнаружении операционной системой модема, и не требует дополнительных знаний по настройке подключения к сети.

Использование мобильного терминала, имеющего доступ к сетям 3G, в качестве маршрутизатора(модема)позволяет установить соединение с сетью Интернет посредством Bluetooth или USB ноутбукам самых разных марок и производителей.

Как это работает?

3G UMTS позволяет использовать оборудование от разных производителей, так как тут используется интерфейс lu. Использование luR предоставляет возможность для реализации мягкой эстафетной передачи абонента между несколькими станциями, на которых может использоваться различное оборудование. Сотовая связь по стандарту UMTS защищена от обрывов связи в движении, ведь тут используется мягкий хэндовер.

https://www.youtube.com/watch?v=ytcopyrightru

Что это, уже стало понятно из предыдущего описания, а как работает такая сеть, стоит разобраться. В блоке CN выполняются наиболее важные операции, которые сводятся к подключению мобильной станции к сети, ее дальнейшему пейджингу, сотовой селекции и локализации абонента, осуществление входящих и исходящих вызовов, эстафетной передаче абонента между базовыми станциями.

с коммутацией каналов и с коммутацией пакетов. Первый вариант предназначен для телефонной связи, а второй — для подключения к интернету. Так как центр коммутации согласовывает свою работу со стационарными сетями, на него возложены все функции, которые требуются для коммутации каналов, а также он несет ответственность за управление соединением. Центр коммутации выполняет процедуры, которые требуются для передачи обслуживания и регистрации местоположения.

На данный момент к 3G можно отнести несколько стандартов, в мире наибольшее распространение получили CDMA2000 и UMTS. Обе технологии базируются на множественном доступе с кодовым распределением сигналов. При помощи них удается расширить узкие полосы сигналов в обычных сотовых сетях. Естественно, подобное расширение предназначено для обеспечения беспроводного широкополосного доступа к сети Интернет.

Схема работы подобных сетей очень проста: абонентское устройство связывается со станцией сотового оператора, если она поддерживает такой стандарт и находится ближе всего. Сотовая связь в данном случае действует на гораздо большем радиусе, чем Wi-Fi, поэтому абоненты не настолько сильно ограничены в пространстве, используя беспроводной интернет.

Оплата 3G чаще всего осуществляется одним из двух способов: оплата по трафику или подписка. Во втором случае у абонента есть доступ к интернету на определенное время, обычно на месяц. Существуют условно безлимитные тарифные планы, имеющие довольно большую квоту трафика, однако обычно ее сложно израсходовать за месяц.

Возможности

UMTS, используя разработки W-CDMA, позволяет поддерживать скорость передачи информации на теоретическом уровне до 42 Мбит/с (при использовании HSPA+). В настоящий момент самыми высокими скоростями считаются 384 Кбит/с для мобильных станций технологии R99 и 7,2 Мбит/с для станций HSDPA в режиме передачи данных от базовой станции к мобильному терминалу. Это является скачком по сравнению со значением в 9,6 Кбит/с при передаче данных по каналу GSM или использованием в соответствии с технологией HSCSD нескольких каналов 9,6 Кбит/с (при этом максимально достигаемая скорость — 14,4 Кбит/с в CDMAOne), и, наряду с другими технологиями беспроводной передачи данных (CDMA2000, PHS, WLAN) позволяет получить доступ к Всемирной Паутине и другим сервисам посредством использования мобильных станций.

Предшествующее поколению 3G, второе поколение мобильной связи включает в себя такие технологии как GSM, IS-95, PHS, используемый в Японии PDC и некоторые другие, принятые на вооружение в самых разных странах. Эволюционным этапом на этом пути развития телекоммуникаций является поколение «2,5G», обозначающее применение на сетях технологии GPRS.

Теоретически скорость передачи данных с GPRS может составлять максимально 172 Кбит/с, но на практике (из-за ограничений абонентских терминалов половиной полосы, то есть 4 слота из 8) она достигает 85 Кбит/с, а в среднем примерно 30-40 Кбит/с, что, тем не менее, повышает привлекательность технологии, основанной на пакетной коммутации по сравнению с более медленными в передаче данных способах, основанных на коммутации каналов. GPRS применена на многих сотовых сетях стандарта GSM

Следующий этап в этой технологии — EDGE, использующий более сложные схемы кодирования информации (вместо гауссовской модуляции GMSK плотностью 1 бит/Герц используется разновидность QPSK, квадратурная ортогональная модуляция 8PSK до 3 бит/Герц) — позволяет поднять скорость передачи данных в три раза до 474 Кбит/с в теории и до 237 Кбит/с на практике (опять ограничение абонентских терминалов — приём 4 слота из 8), и в среднем 100—120 Кбит/с в реальности.

Сети, развёрнутые с применением EDGE, относят к поколению «2,75G». Улучшенный GPRS это и есть EDGE. GSM/EDGE составляют один из уровней доступа 3G/UMTS — GERAN.

Начиная с 2006 года, на сетях UMTS повсеместно распространяется технология высокоскоростной пакетной передачи данных от базовой станции к мобильному терминалу HSDPA, которую принято относить к сетям поколения «3,5G». К началу 2008 года HSDPA поддерживала скорость передачи данных в режиме «от базовой станции к мобильному терминалу» до 7,2 Мбит/с. Также ведутся разработки по повышению скорости передачи данных в режиме от мобильного терминала к базовой станции HSUPA. В долгосрочной перспективе, согласно проектам 3GPP, планируется эволюция UMTS в сети четвёртого поколения 4G, позволяющие базовым станциям передавать и принимать информацию на скоростях 100 Мбит/с и 50 Мбит/с соответственно, благодаря усовершенствованному использованию воздушной среды посредством мультиплексирования с ортогональным частотным разделением каналов (OFDM).

UMTS позволяет пользователям проводить сеансы видеоконференций посредством мобильного терминала, однако опыт работы операторов связи Японии и некоторых других стран показал невысокий интерес абонентов к данной услуге. Гораздо более перспективным представляется развитие сервисов, предлагающих загрузку музыкального и видео контента: высокий спрос на услуги такого рода был продемонстрирован в сетях 2,5G.

Um-интерфейс (GSM Air Interface)

2.1 Частотные диапазоны

Um-интерфейс

Характеристики GSM-850 P-GSM-900 E-GSM-900 DCS-1800 PCS-1900
Uplink, МГц 824.2 — 849.2 890.0 — 915.0 880.0 — 915.0 1710.2 — 1784.8 1850.2 — 1909.8
Downlink, МГц 869.2 — 893.8 935.0 — 960.0 925.0 — 960.0 1805.2 — 1879.8 1930.2 — 1989.8
ARFCN 128 — 251 1 — 124 975 — 1023, 0 — 124 512 — 885 512 — 810

ARFCN (Absolute radio-frequency channel number)

2.2 Физические каналы, разделение множественного доступа

интерференциейFDMA (Frequency Division Multiple Access)TDMA (Time Division Multiple Access)CDMA (Code Division Multiple Access)PAMA (Pulse-Address Multiple Access)PDMA (Polarization Division Multiple Access)SDMA (Space Division Multiple Access)FDMATDMAControl Multiframe (содержит 51 фрейм)Traffic Multiframe (содержит 26 фреймов)
тутздесь

2.3 Логические каналы

  • каналы трафика (TCH — Traffic Channel),
  • каналы служебной информации (CCH — Control Channel).

TCH/FTCH/H

  • Широковещательные (BCH — Broadcast Channels).
    • FCCH — Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH — Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC.
    • BCCH — Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH — Common Control Channels)
    • PCH — Paging Channel. Забегая вперед, расскажу, что Paging — это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH — Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH — Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH — Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH — Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH — Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH — Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

Конкурирующие стандарты

Несмотря на то что UMTS реализует последние разработки в области использования воздушного интерфейса, конкурентными по отношению к этой технологии считаются сети FOMA, CDMA2000 и TD-SCDMA. Из перечисленных только FOMA предполагает использование W-CDMA.

В принципе, конкурирующий стандарт определяется исходя из конфигурации самой UMTS. Если UMTS нацелена на передачу данных, то тут конкурирующими считаются технологии WiMAX, Flash-OFDM и LTE. В настоящей статье обсуждаются аспекты систем UMTS-FDD, формы UMTS, предлагаемой к использованию в традиционных сотовых сетях. Другая форма UMTS, UMTS-TDD, построенная на отличной от W-CDMA технологии передачи данных по воздуху (TD-CDMA) предлагает осуществлять обмен данными между базовой станцией и мобильным терминалом в одном спектре, что является эффективным решениям для предоставления раздельного доступа. В данном случае мы можем говорить о более конкурентоспособном решении по отношению к сетям, аналогичным WiMAX, чем ориентированные на голосовой трафик UMTS.

И CDMA2000, и W-CDMA согласованы Международным союзом электросвязи как часть семейства IMT-2000 поколения 3G в приложение к технологиям TD-CDMA, EDGE и собственному стандарту КНР TD-SCDMA.

Более узкая по отношению к UMTS полоса пропускания CDMA2000 позволяет гораздо легче запустить эту технологию в местах, где эксплуатируются более ранние сети. По ряду причин операторы связи могут эксплуатировать либо UMTS, либо GSM, но не обе технологии в одной полосе частот одновременно. Однако это не является большой проблемой, так как в большинстве регионов развёртывание двух сетей в одном спектре уже ограничено законодательным образом.

Большинство операторов GSM в Северной Америке, так же как и операторы в других регионах, используют оборудование EDGE как наиболее близкую к 3G технологию. Американская AT&T Wireless предложила своим абонентам эту услугу в 2003 году, T-Mobile USA — в октябре 2005 года, канадская Rogers Wireless — в конце 2003 года. Литовский оператор Bitė Lietuva был одним из первых европейских операторов, предложивших пользователям EDGE (декабрь 2003 года), итальянская компания TIM сделала это в 2004 году. Преимущество EDGE заключается в том, что она может быть использована в полосе частот, занимаемых GSM, и лёгкости её внедрения на мобильных терминалах для производителей телефонов. Это лёгкая, удобная в эксплуатации и относительно недорогая технология, служащая временным решением для апгрейда сетей GSM: UMTS требует более значительных вложений и изменений в архитектуре провайдера. Основным конкурентом этого приложения к сетям выступает CDMA2000.

Преимущества 3G над 2G:

  1. Высокая эффективность использования канального ресурса. Рост пропускной способности сети.
  2. Сокращение мощности абонентских и базовых станций, что уменьшает помехи другим электронным устройствам.
  3. Простота частотного планирования, поскольку все базовые станции сети используют один и тот же канальный ресурс.
  4. Упрощение изменения скоростей передачи вверх и вниз  для различных абонентов. Поддержка асимметричных видов передачи информации, таких как Интернет.
  5. Возможность реализации мягкого хэндовера. Сокращение числа обрывов связи из-за хэндовера. Повышение качества связи, особенно при передаче данных, видеосигналов и мультимедиа.
  6. Применение Rake приемника позволяет выделять и обрабатывать наиболее мощные сигналы при многолучевом распространении.
  7. Повышение качества передачи телефонии за счет устранения замираний при многолучевом распространении.
  8. Обеспечение высокой надежности связи факсимиле, Интернет сообщений.
  9. Простота передачи каналов управления.
  10. Облегчение реализации новых услуг: прием мультимедиа, высокоскоростных потоков данных, аудио- и видеоклипов.

В Казахстане

В Казахстане технология 3G W-CDMA введена в сети Kcell/Activ — торговые марки АО «Кселл» — с 1 декабря 2010 года в городах Алматы, Астане. С 2011 года постепенно подключались города Актау, Атырау, Караганда, Кокшетау, Костанай, Кызылорда, Тараз, Петропавловск, Семей, Талдыкорган, Усть-Каменогорск, Шымкент, Каскелен, Талгар и Экибастуз.

Кроме того, технология 3G W-CDMA введена и в сети Beeline, бывший бренд K-Mobile/Excess (торговая марка ТОО «КаР-Тел») в городах Алматы и Астана. С 1 января 2011 г. во всех областных центрах: Актобе, Актау, Атырау, Караганде, Кокшетау, Костанае, Кызылорде, Петропавловске, Талдыкоргане, Таразе, Усть-Каменогорске, Шымкенте и крупных городах Семее, Аягозе, Байконуре, Туркестане, Экибастузе. С 1 декабря в Казахстане будет работать не менее 90 базовых станций 3G в стандарте UMTS и HSDPA от компаний Kcell и Кар-Тел.

С 24 апреля 2011 г. в Казахстане начал работу сотовый оператор Tele2, ранее известный под брендом Neo (ТОО «Мобайл Телеком-Сервис»), который запустил стандарт 3G (UMTS-900) в Алматы и Астане, с весны 2012 — в г. Павлодар.

Возможности

UMTS, используя разработки W-CDMA, позволяет поддерживать скорость передачи информации на теоретическом уровне до 21 Мбит/с (при использовании HSPA+). В настоящий момент самыми высокими скоростями считаются 384 Кбит/с для мобильных станций технологии R99 и 7,2 Мбит/с для станций HSDPA в режиме передачи данных от базовой станции к мобильному терминалу. Это является скачком по сравнению со значением в 9,6 Кбит/с при передаче данных по каналу GSM или использованием в соответствии с технологией HSCSD нескольких каналов 9,6 Кбит/с (при этом максимально достигаемая скорость — 14,4 Кбит/с в CDMAOne), и, наряду с другими технологиями беспроводной передачи данных (CDMA2000, PHS, WLAN) позволяет получить доступ к Всемирной Паутине и другим сервисам посредством использования мобильных станций.

Предшествующее поколению 3G, второе поколение мобильной связи включает в себя такие технологии как GSM, IS-95, PHS, используемый в Японии PDC и некоторые другие, принятые на вооружение в самых разных странах. Эволюционным этапом на этом пути развития телекоммуникаций является поколение «2,5G», обозначающее применение на сетях технологии GPRS.

Теоретически скорость передачи данных с GPRS может составлять максимально 172 Кбит/с, но на практике (из-за ограничений абонентских терминалов половиной полосы, то есть 4 слота из 8) она достигает 85 Кбит/с, а в среднем примерно 30-40 Кбит/с, что, тем не менее, повышает привлекательность технологии, основанной на пакетной коммутации по сравнению с более медленными в передаче данных способах, основанных на коммутации каналов. GPRS применена на многих сотовых сетях стандарта GSM

Следующий этап в этой технологии — EDGE, использующий более сложные схемы кодирования информации (вместо гауссовской модуляции GMSK плотностью 1 бит/Герц используется разновидность QPSK, квадратурная ортогональная модуляция 8PSK до 3 бит/Герц) — позволяет поднять скорость передачи данных в три раза до 474 Кбит/с в теории и до 237 Кбит/с на практике (опять ограничение абонентских терминалов — приём 4 слота из 8), и в среднем 100—120 Кбит/с в реальности.

Сети, развёрнутые с применением EDGE, относят к поколению «2,75G». Улучшенный GPRS это и есть EDGE. GSM/EDGE составляют один из уровней доступа 3G/UMTS — GERAN.

Начиная с 2006 года, на сетях UMTS повсеместно распространяется технология высокоскоростной пакетной передачи данных от базовой станции к мобильному терминалу HSDPA, которую принято относить к сетям поколения «3,5G». К началу 2008 года HSDPA поддерживала скорость передачи данных в режиме «от базовой станции к мобильному терминалу» до 7,2 Мбит/с. Также ведутся разработки по повышению скорости передачи данных в режиме от мобильного терминала к базовой станции HSUPA. В долгосрочной перспективе, согласно проектам 3GPP, планируется эволюция UMTS в сети четвёртого поколения 4G, позволяющие базовым станциям передавать и принимать информацию на скоростях 100 Мбит/с и 50 Мбит/с соответственно, благодаря усовершенствованному использованию воздушной среды посредством мультиплексирования с ортогональным частотным разделением каналов (OFDM).

UMTS позволяет пользователям проводить сеансы видеоконференций посредством мобильного терминала, однако опыт работы операторов связи Японии и некоторых других стран показал невысокий интерес абонентов к данной услуге. Гораздо более перспективным представляется развитие сервисов, предлагающих загрузку музыкального и видео контента: высокий спрос на услуги такого рода был продемонстрирован в сетях 2,5G.

Голосовые вызовы

Стандарт LTE поддерживает только коммутацию пакетов со своей сетью all-IP. Голосовые вызовы в GSM, UMTS и CDMA2000 являются коммутацией каналов, поэтому с переходом на LTE операторы должны реорганизовать свою сеть голосовых вызовов. Имеются три различных подхода:

Голос по LTE (VoLTE)

Технология VoLTE дает возможность передавать голосовые вызовы в сети LTE. VoLTE позволяет не производить переключение из сети LTE в сети предыдущего поколения, что ускоряет процесс осуществления голосового вызова.Основная статья: VoLTE

Circuit-switched fallback (CSFB)
При таком подходе LTE обеспечивает только услуги передачи данных, поэтому, когда требуется принять или совершить голосовой вызов, терминал просто возвращается к сети с коммутацией каналов (например, GSM или UMTS). При использовании этого решения операторам просто нужно обновить MSC, вместо развертывания IMS, поэтому можно быстро начать предоставлять услуги. Однако недостатком является более длительная задержка при установке вызова.
Одновременная передача голоса и LTE (SVLTE)
При таком подходе терминал работает одновременно в LTE и с коммутацией каналов, в режиме LTE предоставляются услуги передачи данных и в режиме с коммутацией каналов обеспечиваются голосовые услуги. Это решение основано исключительно на требованиях к мобильному телефону и не имеет специальных требований к сети. Недостатком такого решения является то, что такой телефон может стать дорогим и иметь высокое энергопотребление.

Что такое 3G

В сетях 3G (The Third Generation – «третье поколение») обеспечивается предоставление двух базовых услуг: передача данных и передача голоса.

Согласно регламентам ITU* сети 3G должны поддерживать следующие скорости передачи данных:

  • для абонентов с высокой мобильностью (до 120 км/ч) – не менее 144 кбит/с;
  • для абонентов с низкой мобильностью (до 3 км/ч) – 384 кбит/с;
  • для неподвижных объектов – 2,048 Мбит/с.

3G включает в себя 5 стандартов семейства IMT-2000 (ссылка) (UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA (собственный стандарт Китая), DECT и UWC-136).

Наибольшее распространение в мире получили два стандарта: UMTS (WCDMA) и CDMA2000 (IMT-MC), в основе которых лежит одна и та же технология — CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением каналов).

Работа по стандартизации UMTS координируется международной группой 3GPP (Third Generation Partnership Project), а по стандартизации CDMA2000 — международной группой 3GPP2 (Third Generation Partnership Project 2), созданными и сосуществующими в рамках ITU.

Технология CDMA2000 обеспечивает эволюционный переход от узкополосных систем с кодовым разделение каналов IS-95 (американский стандарт цифровой сотовой связи второго поколения) к системам CDMA «третьего поколения» и получила наибольшее распространение на североамериканском континенте, а также в странах Азиатско-Тихоокеанского региона.

Технология UMTS (Universal Mobile Telecommunications Service — универсальная система мобильной электросвязи) разработана для модернизации сетей GSM (европейского стандарта сотовой связи второго поколения), и получила широкое распространение не только в Европе, но и во многих других регионах мира.

*(International Telecommunications Union) – Международный Союз Электросвязи (ссылка)

Технология

Следующая ниже информация не применима к сетям, отличным от UMTS, но использующим радио-интерфейс W-CDMA: таким, как например FOMA

UMTS развёртывается путём внедрения технологий радио-интерфейса W-CDMA, TD-CDMA, или TD-SCDMA на «ядро» GSM. В настоящий момент большинство операторов, работающих как на сетях UMTS, так и других стандартов типа FOMA, выбирают в качестве технологии воздушного интерфейса W-CDMA.

Радио-интерфейс UMTS использует в своей работе пару каналов с шириной полосы 5 МГц. Для сравнения, конкурирующий стандарт CDMA2000 использует один или несколько каналов с полосой частот 1,25 МГц для каждого соединения. Здесь же кроется и недостаток сетей связи, использующих W-CDMA: неэкономичная эксплуатация спектра и необходимость освобождения уже занятых под другие службы частот, что замедляет развёртывание сетей, как, например, в США.

Согласно спецификациям стандарта, UMTS использует следующий спектр частот: 1885 МГц — 2025 МГц для передачи данных в режиме «от мобильного терминала к базовой станции» и 2110 МГц — 2200 МГц для передачи данных в режиме «от станции к терминалу». В США по причине занятости спектра частот в 1900 МГц сетями GSM выделены диапазоны 1710 МГц — 1755 МГц и 2110 МГц — 2155 МГц соответственно. Кроме того, операторы некоторых стран (например, американский AT&T Mobility) дополнительно эксплуатируют полосы частот 850 МГц и 1900 МГц. Далее, правительство Финляндии на законодательном уровне поддерживает развитие сети стандарта UMTS900, покрывающей труднодоступные районы страны и использующей диапазон 900 МГц (в данном проекте участвуют такие компании как Nokia и Elisa).

Для операторов связи, уже оказывающих услуги в формате GSM, переход в формат UMTS представляется лёгким с технической точки зрения и значительно затратным одновременно: при создании сетей нового уровня сохраняется значительная часть прежней инфраструктуры, но вместе с тем получение лицензий и приобретение нового оборудования для базовых станций требует значительных капиталовложений.

Основным отличием UMTS от GSM является построение воздушной среды передачи данных на принципах Сети Общего Радиодоступа GeRAN. Это позволяет осуществлять стыки UMTS с цифровыми сетями интегрированного обслуживания ISDN, сетью Internet, сетями GSM или другими сетями UMTS. Сеть общего радиодоступа GeRAN включает три нижних уровня модели OSI (Open Systems Interconnection Model — модель Взаимодействия Открытых Систем), верхний из которых (третий, сетевой уровень) составляют протоколы, образующие системный уровень управления радиоресурсами (протокол RRM). Этот уровень ответственен за управление каналами между мобильными терминалами и сетью базовых станций (в том числе передача обслуживания терминала между базовыми станциями).

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий