Изолированная и глухозаземленная нейтраль

Подробный обзор

Какая сеть является более безопасной — с изолированной или заземленной нейтралью?

При прочих равных условиях прикосновение человека к одной фазе сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью. Однако этот вывод справедлив лишь для нормальных (безаварийных) условий работы сетей, при наличии незначительной емкости относительно земли.

В случае же аварии, когда одна из фаз замкнута на землю, сеть с изолированной нейтралью может оказаться более опасной. Объясняется это тем, что при такой аварии в сети с изолированной нейтралью напряжение неповрежденной фазы относительно земли может возрасти с фазного до линейного, в то время как в сети с заземленной нейтралью повышение напряжения окажется незначительным.

Однако современные электрические сети ввиду их разветвленности и значительной протяженности создают большую емкостную проводимость между фазой и землей. В этом случае опасность прикосновения человека к одной и двум фазам практически одинакова. Каждое из этих прикосновений весьма опасно, так как ток, проходящий через тело человека, достигает очень больших значений.

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено

Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

  • Что такое зануление и для чего оно предназначено
  • Как передается электроэнергия на расстояния
  • Как распределить нагрузку по фазам

Изолированная нейтраль в электрических сетях

Изолированная и глухозаземленная нейтраль

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В.

Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду.

Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль.

Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо.

Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания.

Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ.

Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы.

В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал.

Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора.

Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю.

Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно.

Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Замыкание на корпус

Замыкание на корпус в системе TN-C-S — исходя из определения системы TN-C-S, электрически то же самое, что и короткое замыкание между фазой и нулём. Сопротивление петли фаза-ноль должно быть таким, чтобы гарантированно вызвать сработку электромагнитного расцепителя АВ для его почти мгновенного отключения. Для АВ характеристики «C», для сработки электромагнитного расцепителя ток должен превысить номинал не менее, чем в 10 раз.

Согласно ПУЭ, п.1.7.79, в системе TN при коротком замыкании на корпус, групповой АВ должен отключаться не более, чем за 0,4 с. Это значение считается достаточными для обеспечения электробезопасности при косвенном прикосновении.

Такое время может дать только электромагнитный расцепитель автоматического выключателя. В том же пункте указано, что в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с. Это время тепловой расцепитель тоже не всегда может выдать, и надежда опять же только на электромагнитный расцепитель.

Расчёт АВ (характеристика С) обычно такой: его номинал умножают на 10 (это кратность сработки электромагнитного расцепителя) и на 1,1. Например, чтобы АВ С16 отключился за положенное время, ток КЗ должен достичь 16 * 10 * 1,1 = 176А. А для этого сопротивление петли фаза-ноль должно быть не более 230 / 176 = 1,3 Ома.

В грамотно построенной системе так и есть. Но если электропроводка рассчитана неправильно и сечение проводов заужено, то сопротивление петли возрастает, что может привести к несработке электромагнитного расцепителя. Тепловой расцепитель может задуматься на несколько десятков секунд, в течение которых проводка может разогреться, и ещё более увеличить своё сопротивление и дальнейший разогрев вплоть до самовоспламенения.

Замыкание на корпус в системе TT — очень опасное явление, потому что редко когда сопротивление растеканию электрического тока собственного контура заземления достигает требуемых для сработки электромагнитного расцепителя величин. Именно поэтому в системах TT использование УДТ (УЗО, дифавтомата) обязательно. Вся защита от косвенного прикосновения в этой системе полностью ложиться на УДТ.

Если УДТ вдруг не сработает по утечке, то тепловой расцепитель АВ будет греться несколько десятков секунд, прежде чем должен будет сработать. Но поскольку разогретый за это время кабель ещё повысит своё сопротивление, то ток цепи уменьшится и время отключения АВ ещё больше увеличится. Это в итоге может привести к воспламенению кабеля.

Кроме того, пока тепловой расцепитель не сработал, на корпусах приборов будет висеть потенциал, причём это будет более высокий потенциал, чем при замыкании на нейтраль.

Зачем заземлять нейтраль

Подключение общей точки выходных обмоток силовых трансформаторов с физической землей осуществляется с тремя целями:

  1. Для обеспечения безопасности людей, обслуживающих электроустановки, и их самих.
  2. Для поддержания качества подаваемой электроэнергии в пределах отраслевых норм.
  3. Получения напряжения бытового номинала 220 вольт.

Обеспечение безопасности людей

В нашей стране все электрические сети напряжением 0,4 кВ делаются четырехпроводными и с глухозаземленной нейтралью, причем дублирование соединения нейтрального проводника (он тянется от общей точки соединения трех обмоток трансформатора силовой подстанции) с физической землей, осуществляется на каждой третьей опоре. Это делается с той целью, чтобы сопротивление заземления всегда было не более единиц Ом.

При надежном соединении нейтрали с землей случайное прикосновение к одной фазе не приведет к поражению электрическим током человека, если на нем обувь с подошвой, имеющей диэлектрические свойства. По той причине, что общее сопротивление линии рука – нога равно не менее 1 кОм, а это в десятки раз больше, чем у проводника, соединяющегося с заземлителем. Ток через человека просто не пойдет.

Если нейтральный проводник заземлен, то однофазное замыкание на физическую землю сопровождается лавинообразным ростом силы тока, что сопровождается возникновением электрической дуги и выделением большого количества тепла, в результате чего аварийный проводник плавится и его контакт с землей прекращается.

Чтобы ускорить процесс отключения, в линии устанавливаются автоматические электромагнитные выключатели, которые обесточивают ее при возникновении сверхтоков (КЗ). Это снижает время действия электрического тока на людей или электроустановки. Что дает шанс на то, что первые останутся живы и относительно невредимы, а вторые – работоспособными.

Поддержание качества подаваемой электроэнергии

В общем для трех обмоток трансформатора проводнике сила тока равна нулю и нет напряжения электрического поля. Это является результатом сложения трех векторов сил тока, угол (фазный сдвиг) между которыми равен 120. Но так происходит только в том случае, если все три фазы симметричны друг другу по электрическим параметрам. В реальности они могут отличаться, что приведет к тому, что в нейтрали возникнет ток, а потребителю будет подано, например, не 380, а 320 или 450 вольт. Заземление нейтрали в трехфазной сети принудительно выравнивает фазы, благодаря тому, что паразитный ток стекает на землю.

Это особенно актуально в том случае, если электроэнергия подается для питания однофазных потребителей. Оно осуществляется прокладыванием трехфазной линии с общей нейтралью (четыре провода) и подключением групп потребителей к разным фазам. Поскольку уровень энергопотребления в квартирах существенно отличается – в одной, например, включен только телевизор, а в другой еще и стиральная машина, перекос фаз может достигать критического уровня.

Если соединение с заземлителем недостаточно надежно и имеет большое сопротивление, нейтральный провод, который обычно делают меньшего сечения, чем фазный, может отгореть. Это приводит к тому, что у кого-то напряжение на вводах будет почти 380 вольт, а у других около 110. Оба режима опасны для бытовых приборов и могут привести к электротравме людей или животных.

Бытовой номинал напряжения

Бытовое напряжение 220 вольт снимается между фазной линией и нейтралью, от линейного (между фазами) оно отличается в 1,7 раза. Для обеспечения стабильности его значения нейтраль заземляется.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Меры предосторожности

Задача и особенности заземления трансформаторов.

Теперь разберём, для чего выполняется заземление нейтрали трансформатора, и физику работы такой электрической сети.

В теоретической физике потенциал нулевого проводника по отношению к земле не должен превышать нулевого значения. Повторное заземление у принимающего устройства потребителя помогает добиться этого значения с ещё более высокой степенью вероятности, особенно, если до ТП есть достаточное расстояние.

Поражение током возможно в следующих ситуациях:

  1. Повреждение изоляции токоведущих частей, выход из строя электрооборудования. Образуется шаговое напряжение – на плоскости пола появляется потенциал, небезопасный для идущего человека;
  2. Повреждение изоляции электрооборудования. В этом случае на корпусе может оказаться опасное для здоровья напряжение;
  3. Повреждение защитной изоляции кабелей. Здесь напряжение появляется на металлических полках, с лежащими кабельными линиями;
  4. Нарушение технологии производства работ, приведшее к прикосновению к токоведущим частям, находящимся под фазным напряжением.

К включенному в сеть проводу, лежащему на влажном полу, подходить не рекомендуется. В этой ситуации появляется потенциал, опасный для человека. При попытке сделать шаг ноги оказываются под действием различных величин потенциала. Удар током обеспечен. Для избегания подобного развития событий перед заливкой бетона укладывается металлический каркас, соединённый с контуром заземления минимум в 2-х точках. За счёт этого при возникновении на полу потенциала ноги идущего человека будут зашунтированы, поражения электрическим током удастся избежать.

Для недопущения появления напряжения на нетоковедущих частях электрической системы ПУЭ обязывает заземлить абсолютно все металлические детали, находящиеся в распредустройствах трансформаторных подстанций и потребителя, а также корпуса электроприборов. В промышленных цехах, где присутствует электрическое оборудование (станки, производственные линии), по периметру пускается стальная полоса для присоединения всех без исключения металлсодержащих частей. Таким образом, выравниваются потенциалы земли и металлических частей, расположенных в помещении.

При возникновении пробоя на заземлённый корпус электрический ток пойдёт по пути наименьшего сопротивления, т.е. по заземляющим проводникам до контура заземления, а не через обладающее большим сопротивлением человеческое тело, даже при не сработавшей защите.

Меры предосторожности при работе в сети с глухозаземленной нейтралью

По этой причине ток через контур заземления направится в сторону нейтрали силового трансформатора. Это приводит к короткому замыканию с большой величиной электрического тока. На превышение заданного параметра должен будет среагировать защитный коммутационный аппарат: плавкая вставка или автоматический выключатель. За счёт этого повреждённый участок цепи будет выведен из работы. Таким образом, организуется быстрая локализация аварийного режима.

Классификация систем заземления по ПУЭ

Описанная выше схема заземления носит обозначение TN-C. Проводник, соединяющий глухозаземленную нейтраль с потребителями, носит название совмещенного, так как служит и для передачи тока нагрузки, так и для связи корпусов электрооборудования с контуром заземления. Носит он сокращенное обозначение PEN.

На этой универсальности и вырисовывается главный недостаток такой системы. При прохождении нулевого тока нагрузки на протяжении PEN-проводника образуется разность потенциалов. Особенно это сказывается при несимметричной нагрузке фаз. Итог: потенциал на корпусах электрооборудования может отличаться от потенциала земли.

В электроустановках, особенно старых, теоретически возможны обрывы PEN-проводника. При этом на нем относительно земли может оказаться потенциал фазного напряжения. Этот режим представляет угрозу жизни людей.

Возникают технические сложности и с заземлением корпусов бытовых электроприборов, подключенных к системе TN-C.

Для устранения этих недостатков применяется система TN-S. В ней функции защиты и коммутации рабочего тока разделены между двумя нулевыми проводниками. Рабочий ток проводит нулевой рабочий проводник – N, а нулевой защитный PE служит для соединения корпусов с контуром заземления.

Разделение PEN на N и РЕ происходит непосредственно на подстанции, где заземлена нейтраль. Но при модернизации и реконструкции электроустановок это можно сделать в любом распределительном устройстве. При этом вся схема в целом имеет название TN-C-S. В месте разделения требуется наличие контура повторного заземления.

Сети с изолированной нейтралью по ПУЭ обозначаются IT. Она не имеет проводников для связи с контуром заземления питающей подстанции. У потребителя устраивается свой контур заземления.

Существует система ТТ, также имеющая глухозаземленную нейтраль. В отличие от систем TN она имеет только нулевой рабочий проводник. Нулевой защитный к потребителю приходит от собственного заземляющего устройства.

https://youtube.com/watch?v=3Z3D1I6WHh8

Подключение с помощью низкоомного сопротивления

Среди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.

В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).

Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором, следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.

Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.

При резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий

Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.

Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.

Режимы работы нейтралей в электроустановках

Сохрани ссылку в одной из сетей:

Б.7.1 Режим работынейтрали

Цельдисциплины – подготовкастудентов к автоматизированной обработкеданных, полученных в результатеисследования различных физическихпроцессов, протекающих к электротехнологических,электрических, электронных и прочихустройствах при различных режимахнейтрали.

Задачамиизучениядисциплины являются приобретениенавыков работы с электрооборудованиемс различным режимом работы нейтрали,приобретение знаний в области способовпредставления и обработки информации.

Врезультате изучения дисциплины студентдолжен:

уметь:систематизировать полученные в ходеэксплуатации данные; отображать их вдоступном виде; правильно представлятьих в графическом виде; выбирать различныевиды графического представленияинформации для точного отображенияхарактера происходящих процессов;выбирать методы и способы обработкитехнической информации; математическиописывать характер физических процессов;

знать:основные принципы работы с изучаемымэлектрооборудованием; методы и способыобработки и представления статистическихданных; математические, табличные,графические способы представленияразличной информации при эксплуатацииэлектрических систем;

владеть:навыками работы распространенныхпрограммных продуктов для инженерныхрасчетов и проектирования, основнымипринципами представления и обработкиинформации.

дисциплины. Основные разделы.

Режимы работынейтралей в электроустановках

Нейтралямиэлектроустановокназывают общие точки трехфазных обмотокгенераторов или трансформаторов,соединенных в звезду.

В зависимостиот режима нейтрали электрические сетиразделяют на четыре группы:

1)сетис незаземленными (изолированными)нейтралями;

2)сети с резонансно-заземленными(компенсированными) нейтралями;

3)сети с эффективно заземленными нейтралями;

4)сети с глухозаземленными нейтралями.

Согласнотребованиям Правил устройстваэлектроустановок (ПУЭ, гл. 1.2)

Сетис номинальным напряжением до 1 кВ,питающиеся от понижающих трансформаторов,присоединенных к сетям с Uном> 1 кВ,выполняются с глухим заземлениемнейтрали.

   Сети с Uном до 1кВ, питающиеся от автономного источникаили разделительного трансформатора(по условию обеспечения максимальнойэлектробезопасности при замыканиях наземлю), выполняются с незаземленнойнейтралью.

Сетис Uном = 110 кВ и выше выполняются сэффективным заземлением нейтрали(нейтраль заземляется непосредственноили через небольшое сопротивление).

Сети3 — 35 кВ, выполненные кабелями, при любыхтоках замыкания на землю выполняютсяс заземлением нейтрали через резистор.

Сети3—35 кВ, имеющие воздушные линии, притоке замыкания не более 30 А выполняютсяс заземлением нейтрали через резистор.

Классификация сетей с глухозаземлённой нейтралью

Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

  • L — фазный проводник;
  • N — рабочий ноль;
  • РЕ — защитный нулевой проводник;
  • РЕN — рабочий и нулевой проводник выполнены одним проводом.

Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

  • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника однофазной цепи его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
  • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
  • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
  • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.

Изолированная и глухозаземленная нейтраль

Высокоомное резистивное заземление нейтрали

Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима.

Есть два случая высокоомного заземления:

  1. Первый – установка резистора в нейтраль трансформатора, аналогично дугогасящему реактору.
  2. Второй – использование для этой цели обмотки, соединенной в разомкнутый треугольник.

Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.

Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.

Про резистивное заземление нейтрали можно посмотреть в видео ниже:

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий