Рождение и этапы эволюции звезд

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Рождение и этапы эволюции звезд
Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Рождение и этапы эволюции звезд
Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Рождение и этапы эволюции звезд
Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Рождение и этапы эволюции звезд
Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

Фаза главной последовательности

Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.

Рождение и этапы эволюции звезд

Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды

С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода

Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.

Рождение и этапы эволюции звезд

Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.

Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.

У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.

Рождение и этапы эволюции звезд

Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков телескопа Хаббл. Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Теория скользящей эволюции звезд

Когда диаграмма Герцшпрунга — Рессела только составлялась, представления о ядерных реакциях в недрах звезд были еще весьма смутными. Господствовало мнение, что звезды на протяжении всей своей жизни непрерывно сжимаются.

С этой точки зрения диаграмма Герцшпрунга— Рессела, казалось, давала четкую и захватывающую картину звездной эволюции, показывая, как звезды возникают, проходят через различные стадии и в конце концов перестают излучать.

Выводы, сделанные Ресселом на основании этой диаграммы, можно коротко изложить следующим образом:

  1. Сначала звезда представляет собой скопление холодного газа, которое медленно сжимается.
  2. По мере сжатия звезда нагревается и на первых стадиях излучает почти исключительно в инфракрасной области спектра — это инфракрасный гигант вроде Эпсилона Возничего.
  3. Продолжая сжиматься, она раскаляется настолько, что излучает уже ярко-красный свет, как Бетельгейзе и Антарес.
  4. Звезда продолжает сжиматься и нагреваться, становясь желтым гигантом, меньшим по размерам, но более горячим, чем красный гигант, а потом голубовато-белой звездой — еще меньше и еще горячее.
  5. Голубовато-белая звезда класса О не намного больше Солнца, но гораздо горячее его — температура ее поверхности достигает 30 000°С, т.е. она в пять раз выше температуры поверхности Солнца. Максимум ее излучения находится в сине-фиолетовой области видимого спектра и даже в ультрафиолетовой, чем и объясняется ее цвет.
  6. Переходя от стадии холодной туманности в голубовато-белую стадию, звезда перемещается в верхней части диаграммы Герцшпрунга—Рессела справа налево, пока не достигает верхнего левого конца главной последовательности.
  7. Теперь звезда продолжает сжиматься под влиянием тяготения, но по какой-то причине более не нагревается. Одно из ранних объяснений этого факта заключалось в том, что на стадии голубовато-белой звезды вещество ее достигает такой плотности, что уже теряет свойства газа. При дальнейшем сжатии все большая часть ядра звезды перестает быть газом, а из-за этого по какой-то причине пропорционально сокращается выделение тепла.
    Поэтому голубовато-белая звезда одновременно и сжимается, и остывает, быстро слабея под влиянием обоих этих факторов. Она становится желтым карликом, как наше Солнце, потом красным карликом, как звезда Барнарда, и, наконец, гаснет совсем и превращается в черный карлик — пепел догоревшей звезды.

Рождение и этапы эволюции звезд

Вот так схематично на диаграмме Герцшпрунга – Рассела показана эволюция «типичной» звезды

По этой гипотезе, сжимаясь из голубовато-белой звезды до последней стадии — стадии черного карлика, звезда как бы скользит по главной последовательности из верхнего левого угла к нижнему правому. Поэтому такую теорию можно назвать теорией скользящей эволюции звезд.

Схема выглядела очень заманчивой и казалась весьма правдоподобной.

Во-первых, именно такого непрерывного сжатия, сопровождающегося сначала нагреванием, а потом остыванием, было естественно ожидать. Газ, сжимаемый в лабораторных экспериментах, становился горячее, раскаленные предметы, предоставленные сами себе, остывали.

Далее, если одна и та же звезда являлась красным гигантом где-то на раннем этапе своего существования и красным карликом в конце жизни, следовало ожидать, что средняя масса красных карликов не очень отличается от средней массы красных гигантов. Другими словами, красные гиганты колоссальны не потому, что содержат огромные количества звездною вещества, а только потому, что их вещество распределено в огромном объеме.

Так и оказалось. Красные гиганты отнюдь не столь массивны, как можно было бы ожидать, судя по их размерам, а только очень разрежены. Вещество звезды вроде Эпсилона Возничего, если бы его удалось без изменений перенести в земную лабораторию, показалось бы (в большей части своего объема) просто пустотой.

Действительно, массы звезд в среднем удивительно сходны. Как ни разнятся звезды объемом, плотностью, температурой и другими свойствами, массы их различаются мало. Масса большинства звезд колеблется от 0,2 до 5 масс Солнца.

Однако теория скользящей эволюции звезд при всей её изящности, не объясняет некоторых моментов. Вернее, содержит очень и очень необычные исключения.

Рождение звёзд

NGC 604, огромная звёздообразующая туманность в Галактике Треугольника

Основная статья: Формирование звёзд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационное сжатие облака. Один из сценариев, приводящих к этому — столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звёздообразования.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд, в масштабе времени:
tff≃1Gρ{\displaystyle t_{ff}\simeq {\frac {1}{\sqrt {G\rho }}}} К примеру, для Солнца tff=5⋅107{\displaystyle t_{ff}=5\cdot 10^{7}} лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим, — глобула прозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счёт этого растет в размерах. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

Вышеописанный сценарий правомерен только в случае, если молекулярное облако не вращается, однако все они в той или иной мере обладают вращательным моментом. Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Главная последовательность как стадия эволюции

Приближённая зависимость времени пребывания звезды на главной последовательности от её массы.

Области звездообразования с большим количеством звёзд главной последовательности спектрального класса O.

Диаграмма Герцшпрунга — Рассела для двух рассеянных звёздных скоплений: M 67 и NGC 188, позволяющая определить их возраст.

Эволюционный трек после главной последовательности для звезды с массой как у Солнца и солнечной металличностью на диаграмме Герцшпрунга — Рассела.

Основная статья: Звёздная эволюция

Звёзды попадают на главную последовательность после стадии протозвезды. Момент, когда мощность излучения звезды сравнивается с мощностью термоядерных реакций внутри неё (то есть, когда энергия перестаёт вырабатываться за счёт сжатия), считается моментом попадания звезды на главную последовательность. Считается, что в этот момент у звезды нулевой возраст, и область, где расположены такие звёзды, называется начальной главной последовательностью или главной последовательностью нулевого возраста. Она расположена в нижней части главной последовательности.

Общее количество энергии, которое звезда сможет произвести в процессе синтеза гелия из водорода, ограничено, в первую очередь, количеством водорода. Если звезда находится в равновесии, то она должна излучать столько же энергии, сколько и вырабатывает. Следовательно, можно оценить время нахождения звезды на главной последовательности, поделив общий запас энергии, который выделится, если весь водород в термоядерных реакциях превратится в гелий, на её светимость. Например, для Солнца этот период составит порядка 1010 лет.

Для звёзд главной последовательности с массами в диапазоне 2 M < M < 20 M зависимость масса — светимость выглядит как LM3,5, похожее соотношение выполняется и для меньших масс. Следовательно, у таких звёзд время нахождения на главной последовательности связано с массой как tM−2,5. Значит, более тяжёлые звёзды раньше сходят с главной последовательности и меньше живут. Тем не менее, у самых тяжёлых звёзд зависимость светимости от массы становится линейной, срок их жизни перестаёт уменьшаться с ростом массы, но составляет, по разным оценкам, от одного до нескольких миллионов лет, что очень мало с астрономической точки зрения. Самые маломассивные красные карлики могут жить порядка 10 триллионов лет.

Эта особенность позволяет определять возраст звёздных скоплений с учётом того, что звёзды в них образовались одновременно. Если построить диаграмму Герцшпрунга — Рассела для звёздного скопления, то главная последовательность будет ограничена слева и будет переходить в ветвь субгигантов — скопление живёт уже достаточно времени, чтобы самые массивные звёзды сошли с главной последовательности. Эта особенность позволяет рассчитывать возраст скопления как время нахождения на главной последовательности для звёзд на точке изгиба.

В течение жизни звезды в ядре постепенно накапливается гелий, который уменьшает темп реакций, и характеристики звезды меняются, чтобы сохранялось равновесие. Она постепенно отходит от начальной главной последовательности в сторону увеличения светимостей и уменьшения температур. Для звёзд средней массы стадия главной последовательности завершается, когда температура в недрах становится настолько большой, что водород начинает сгорать уже за пределами ядра. В этот момент звезда переходит на ветвь субгигантов, а через некоторое время становится красным гигантом, после чего в ней происходит гелиевая вспышка и начинается горение гелия. У звёзд с большей массой также начинается горение гелия, хотя и немного другим путём.

О дальнейшей эволюции звёзд наименьшей массы имеются лишь теоретические сведения, так как потенциальный срок их жизни превышает возраст Вселенной. Считается, что звёзды с массами меньше 0,5 M не могут стать гигантами, и по мере накопления гелия в ядре звезда сжимается и нагревается, становясь голубым карликом.

Так или иначе, дальнейшим стадиям эволюции звезды соответствует большая светимость, чем на стадии главной последовательности. Напротив, дальнейшие термоядерные реакции, если они идут, имеют гораздо меньшее удельное энерговыделение: для горения гелия оно примерно в 10 раз меньше, чем для синтеза гелия из водорода, а для следующих реакций оно ещё меньше. Из-за этого дальнейшие стадии эволюции звёзд проходят гораздо быстрее, чем стадия главной последовательности: к примеру, для Солнца стадия красного гиганта займёт около 130 миллионов лет — примерно на два порядка меньше, чем стадия главной последовательности. У большинства звёзд ситуация аналогичная, поэтому абсолютное их большинство, до 90 %, находится на главной последовательности.

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца)[источник не указан 1525 дней], находящиеся на подходе к главной последовательности, полностью конвективны, — процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной[источник не указан 1106 дней]. Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)[источник не указан 1525 дней] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B—F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра.
У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца)[источник не указан 1525 дней], находящиеся на подходе к главной последовательности, полностью конвективны, — процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной[источник не указан 1106 дней]. Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)[источник не указан 1525 дней] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B—F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра.
У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.