Спектр

Виды оптического спектра

Говоря об электромагнитных волнах, мы затронули такое понятие, как спектр цветов. Однако все далеко не так просто. Обычный цвет предмета определяет, какой длины волны фотон отражается от его поверхности. Но любое твердое тело обладает, помимо внешних граней, еще и внутренней структурой, которая скрыта в его объеме. Именно спектры помогают ее определить. Но в данном случае колеблются не фотоны, а частицы самого вещества. И эти колебания, вернее их спектр, сообщает все о связях внутри структуры. Увидеть или каким-то образом зафиксировать такую информацию без специальных приборов невозможно.

Исторические сведения

Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон, который в своём труде «Оптика», вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света, а не вносится призмой, как утверждал Роджер Бэкон в XIII веке. Фактически, Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света — преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом.

Следующий этап наступил через 100 лет, когда Уильям Волластон в 1802 году наблюдал тёмные линии в солнечном спектре, но не придал своим наблюдениям значения. В 1814 году эти линии независимо обнаружил и подробно описал Фраунгофер (сейчас линии поглощения в солнечном спектре называются линиями Фраунгофера), но не смог объяснить их природу. Фраунгофер описал свыше 500 линий в солнечном спектре и отметил, что положение линии D близко к положению яркой жёлтой линии в спектре пламени.

В 1854 году Кирхгоф и Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов — одних из самых мощных методов экспериментальной науки.

В 1859 году Кирхгоф опубликовал в журнале «Ежемесячные сообщения Берлинской академии наук» небольшую статью «О фраунгоферовых линиях». В ней он писал:

Спектр

Спектроскоп Кирхгофа-Бунзена, Annalen der Physik und der Chemie (Poggendorff), Vol. 110 (1860).

Спектр

Оптический линейчатый эмиссионный спектр азота

Примечательно, что эта работа Кирхгофа неожиданно приобрела и философское значение: ранее, в 1842 году, основоположник позитивизма и социологии Огюст Конт в качестве примера непознаваемого привёл именно химический состав Солнца и звёзд:

Работа Кирхгофа позволила объяснить природу фраунгоферовых линий в спектре Солнца и определить химический (или, точнее, элементный) состав его атмосферы.

Фактически, спектральный анализ открыл новую эпоху в развитии науки — исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики: Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.

В 1910 году были получены первые неэлектромагнитные спектры: Дж. Дж. Томсон получил первые масс-спектры, а затем в 1919 году Астон построил первый масс-спектрометр.

С середины XX века, с развитием радиотехники, получили развитие радиоспектроскопические, в первую очередь магнито-резонансные методы — спектроскопии ядерного магнитного резонанса (ЯМР-спектроскопия, являющаяся сейчас одним из основных методов установления и подтверждения пространственной структуры органических соединений), электронного парамагнитного резонанса (ЭПР), циклотронного резонанса (ЦР), ферромагнитного (ФР) и антиферромагнитного резонанса (АФР).

Другим направлением спектральных исследований, связанным с развитием радиотехники, стала обработка и анализ первоначально звуковых, а потом и любых произвольных сигналов.

Принцип действия УФ-светодиодов

Ультрафиолетовое излучение занимает промежуточное положение между видимым спектром обычного света и рентгеновским излучением. Оно занимает диапазон длин волны от 10 до 400 нм. Принцип действия UV диодов аналогичен обычным LED светодиодам, но для создания излучения на коротких волнах используются другие материалы и присадки:

  • нитрид
    галлия; 
  • нитрид алюминия;
  • нитрид бора;
  • нитрид индия;
  • арсенид алюминия галлия.

Существующие конструкции способны излучать в диапазоне от 100 до 400 нм, в т.н. «ближней области УФ диапазона». Источником является кристалл с p-n переходом, в котором происходит рекомбинация электронов и образование фотонов. Область излучения зависит от материала, использованного при изготовлении данного типа светодиода. Наибольшее распространение получили устройства с максимальной длиной волны — 365-400 нм, они сравнительно дешевы и просты в изготовлении.

Применение

Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.

На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.

Типы спектров

Спектр

Два представления : сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.

По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.

Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), абсорбционные (спектры поглощения) и спектры рассеивания.

  • Электромагнитный спектр — совокупность всех диапазонов частот электромагнитных волн.
  • Эмиссионный спектр — набор частот электромагнитного излучения, испускаемого атомом или молекулой при переходе на более низкий энергетический уровень.
  • Спектр масс — набор значений масс элементарных частиц.
  • Энергетический спектр — зависимость энергии частицы от импульса.
  • Спектр нейтронов — функция, описывающая распределение нейтронов по энергии.

Классификация спектров.

Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры. Поясним эту классификацию на примере видоизмененной схемы опыта Ньютона (которая, заметим, была применена лишь столетие спустя). Основное нововведение в этой схеме состояло в том, что круглое отверстие в ставне было заменено коллиматором – узкой щелью и линзой перед призмой. Вторая линза помещалась за призмой и предназначалась для проецирования спектра на экран, как это делал сам Ньютон в своих более поздних опытах. Если на щель простого спектроскопа (как теперь называется устройство, состоящее из щели, линз и призмы) направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Если же щель осветить пламенем, в которое внесена крупинка поваренной соли (хлорида натрия NaCl), то спектр будет фактически состоять из двух близко расположенных ярких желтых линий. Аналогично, если щель осветить красным светом неоновой рекламной трубки, то на экране появится ряд ярких красных линий. Здесь каждая линия – это изображение щели спектроскопа, образованное светом определенной длины волны, а полученный спектр называется линейчатым спектром испускания. Существуют спектры, состоящие из групп линий, расположенных настолько тесно, что каждая группа выглядит как узкий участок непрерывного спектра. Такие спектры называются полосатыми.

Типы спектров

Спектр
Два представления : сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.

По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.

Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), абсорбционные (спектры поглощения) и спектры рассеивания.

  • Электромагнитный спектр — совокупность всех диапазонов частот электромагнитных волн.
  • Эмиссионный спектр — набор частот электромагнитного излучения, испускаемого атомом или молекулой при переходе на более низкий энергетический уровень.
  • Спектр масс — набор значений масс элементарных частиц.
  • Энергетический спектр — зависимость энергии частицы от импульса.
  • Спектр нейтронов — функция, описывающая распределение нейтронов по энергии.

Общие характеристики аквариумного освещения

К основным характеристикам освещения относят мощность, цветовую температуру, коэффициент цветопередачи и световой спектр.

Мощность – это энергия, которая переносится излучением через поверхность в единицу времени. Мощность источников освещения для аквариумов составляет 8-56 Вт.

Цветовая температура ламп для аквариума.

Цветовая температура – параметр, измеряющий восприятие цвета светового потока человеком. По значению этой величины освещение считают теплым, холодным или нейтральным. Синий цвет означает высокую цветовую температуру, красный – низкую.

Цветовая температура оттенков белого света выглядит следующим образом: теплый белый – 3000 К, холодный белый – 5000 К, нейтральный белый – 4000 К. Природную окраску подводных растений способны передавать осветительные приборы с цветовой температурой 6500-8000 К.

Коэффициент цветопередачи – параметр определяет степень соответствия цветов, видимых человеку, с природными цветами. Значения этого коэффициента располагаются в интервале от 0 до 100.

Если он равен 0, то осветительный прибор не передает цветов. Если коэффициент находится в интервале от 91-100, то цвет максимально приближен к исходному.

Световой спектр – видимый человеческим глазом диапазон волн длиной от 380 до 789 нм, которые воспринимаются как различные цвета. Короткие волны в нашем восприятии фиолетового цвета, длинные – красного.

Подбор по объему

Уровень освещения рассчитывается по правилу «ватт на литр». Общую мощность всех световых источников в аквариуме нужно разделить на его объем. Величина 0,1 Вт/л и больше означает, что освещение сильное, 0,25 Вт/л – слабое.

Пример правильно подобранного освещения для большого аквариума.

С активным использованием энергосберегающих технологий указанное правило перестало быть универсальным. Разные осветительные приборы, имея одну и ту же мощность, излучают разное количество света.

Интенсивность освещения

Уровень освещения рассчитывается по правилу «ватт на литр». Общую мощность всех световых источников в аквариуме нужно разделить на его объем. Величина 0,1 Вт/л и больше означает, что освещение сильное, 0,25 Вт/л – слабое.

С активным использованием энергосберегающих технологий указанное правило перестало быть универсальным. Разные осветительные приборы, имея одну и ту же мощность, излучают разное количество света. Поэтому при подборе уровня освещенности вместо ватт стали использовать люмены. Общее число люменов нужно разделить на объем резервуара. Высоким уровнем освещения считается значение более 50 Лм/л, низким – 15-25 Лм/л, средним – 25-50 Лм/л.

Спектры произвольных сигналов: частотное и временное представления[править | править код]

Спектр

Спектр ядерного магнитного резонанса (1H), полученный методом Фурье-спектроскопии ЯМР. Красным показан исходный временной спектр (интенсивность-время), синим — частотный (интенсивность-частота), полученный Фурье-преобразованием.

В случае акустики или аналоговых электрических сигналов ситуация другая: результатом измерения является функция зависимости интенсивности от времени , то есть эта функция задана на временной области (time domain). Но, как известно, звуковой сигнал является суперпозицией звуковых колебаний различных частот, то есть такой сигнал можно представить и в виде «классического» спектра, описываемого .

Именно преобразование Фурье однозначно определяет соответствие между и

Спектры произвольных сигналов: частотное и временное представления

Спектр
Спектр ядерного магнитного резонанса (1H), полученный методом Фурье-спектроскопии ЯМР. Красным показан исходный временной спектр (интенсивность-время), синим — частотный (интенсивность-частота), полученный Фурье-преобразованием.

В 1822 году Фурье, занимавшийся теорией распространения тепла в твёрдом теле, опубликовал работу «Аналитическая теория тепла», сыгравшую значительную роль в последующей истории математики. В этой работе он описал метод разделения переменных (преобразование Фурье), основанный на представлении функций тригонометрическими рядами (ряды Фурье). Фурье также сделал попытку доказать возможность разложения в тригонометрический ряд любой произвольной функции, и, хоть его попытка оказалась неудачна, она, фактически, стала основой современной цифровой обработки сигналов.

Оптические спектры, например, Ньютоновский, количественно описываются функцией зависимости интенсивности излучения от его длины волны f(λ){\displaystyle f(\lambda )} или, что эквивалентно, от частоты f(ω){\displaystyle f(\omega )}, то есть функция f(ω){\displaystyle f(\omega )} задана на частотной области (frequency domain). Частотное разложение в этом случае выполняется анализатором спектроскопа — призмой или дифракционной решеткой.

В случае акустики или аналоговых электрических сигналов ситуация другая: результатом измерения является функция зависимости интенсивности от времени j(τ){\displaystyle j(\tau )}, то есть эта функция задана на временной области (time domain). Но, как известно, звуковой сигнал является суперпозицией звуковых колебаний различных частот, то есть такой сигнал можно представить и в виде «классического» спектра, описываемого f(ω){\displaystyle f(\omega )}.

Именно преобразование Фурье однозначно определяет соответствие между j(τ){\displaystyle j(\tau )} и f(ω){\displaystyle f(\omega )} и лежит в основе Фурье-спектроскопии.

СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

В соответствии с длинами волн (l) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным.

3.3. Сигналы при дискретной модуляции

При дискретной модуляции закодированное сообщение u(t), представляющее собой последовательность кодовых символов {}, преобразовывается в последовательность элементов сигнала {}. Последние отличаются от кодовых символов лишь электрическим представлением. В частном случае дискретная модуляция состоит в воздействии кодовых символов i} на переносчик f(t). Такая дискретная модуляция аналогична непрерывной.

Посредством модуляции один из параметров переносчика изменяется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющимися параметрами которого являются величина и направление. Обычно же в качестве переносчика, как и при непрерывной модуляции, используется переменный ток (гармоническое колебание). В этом случае можно получить амплитудную (AM), частотную (ЧМ) и фазовую (ФМ) модуляции. Дискретную модуляцию часто называют манипуляцией, а устройство, осуществляющее дискретную модуляцию (дискретный модулятор), называют манипулятором или генератором сигналов.

На рис. 3.4 приведены графики сигналов при различных видах манипуляции. При AM символу 1 соответствует передача несущего колебания в течение времени  (посылка), символу 0 — отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой  соответствует символу 1, а передача колебания  соответствует 0. При ФМ меняется фаза несущей на 180° при каждом переходе от 1 к 0 и от 0 к 1.

Рис.  3.4.  Сигналы  при различных видах  дискретной   модуляции

Наконец, в настоящее время применяется относительная фазовая модуляция (ОФМ). В отличие от ФМ, в системе ОФМ фаза несущего колебания изменяется на 180° при передаче символов 1 и остается неизменной при передаче символов 0.

При ОФМ манипуляция каждой данной посылки осуществляется относительно предыдущей. Очевидно, таким способом можно манипулировать (изменять) любой параметр несущего колебания: при изменении частоты получим относительную частотную манипуляцию (ОЧМ), при изменении  амплитуды относительную амплитудную манипуляцию (ОАМ). Дельта-модуляция, о которой мы упоминали в § 1.6, также является одним из видов относительной манипуляции.

Рассмотрим спектры сигналов при некоторых видах дискретной модуляции. Будем полагать, что модуляция производится двоичным сообщением u(t), представляющим собой периодическую последовательность прямоугольных импульсов с периодом .

Амплитудная манипуляция. Сигнал AM можно записать в виде

                                                                                        (3.32)

где периодическая функция u(t) на интервале  равна:

                                                                                      (3.33)

Представим u(t) рядом Фурье

                                                                              (3.34)

Тогда сигнал AM запишется в виде

                      (3.35)

Рис. 3.5. Спектр сигнала при амплитудной манипуляции

Спектр сигнала AM, построенный по ф-лам (3.35), показан на рис. 3.5. Он состоит из несущего колебания с амплитудой и двух боковых полос, спектральные составляющие которых имеют амплитуды

                                                                                (3.36)

Огибающая спектра дискретного сигнала AM выражается формулой

                                                                                             (3.37)

т. е. представляет собой смещенный на частоту спектр одиночного импульсного сигнала u(t).

Фазовая манипуляция. Сигнал ФМ можно записать в виде

      (3.38)

Периодическая функция, определяющая закон изменения фазы на интервале , выражается формулой

                                                                                     (3.39)

Подстановка (3.39) в выражение (3.38) дает

Представим u(t) рядом Фурье

Тогда сигнал ФМ запишется в виде

           (3.40)

Рис. 3.6. Спектры сигналов при фазовой манипуляции

Спектр сигнала ФМ для различных значений девиаций фазы , построенной на основании ф-лы (3.40), показан на рис. 3.6. Он состоит из несущего колебания и двух боковых полос. Амплитуда несущего колебания зависит от : и при =— обращается в 0. Амплитуды спектральных составляющих в боковых полосах также зависят от . При увеличении  от 0 до , как видно из рис. 3.6, амплитуда несущего колебания убывает до нуля, а амплитуды боковых частот увеличиваются.

Когда =— вся энергия сигнала ФМ содержится только в боковых полосах. Так же, как и при AM, огибающая дискретного спектра боковых частот представляет собой смещенный на частоту спектр одиночного импульсного сигнала u(t), умноженный нa sin:

 (3.41)

Аналогично определяется спектр сигнала при частотной манипуляция.

Электромагнитный спектр

Спектр

Но чаще всего имеется в виду другой аспект понятия «спектр». Что такое подразумевается под этим, раскроем ниже. Нашим миром правят электромагнитные волны. Об их природе можно говорить часами, однако не будем отвлекаться. Напомним только то, что они порождаются движущимися заряженными частицами. Шкала электромагнитных волн включает гораздо больше, чем спектр цветов, которые способны видеть наши глаза. Радиоволны, инфракрасное излучение, ультрафиолет, рентген и уж тем более гамма-излучение – все это недоступно нашему непосредственному восприятию. Представьте, если бы человек был способен зафиксировать, «увидеть», например, вай-фай, или сигнал радио в машине, или температуру тела. Кажется невероятным, что это возможно. Мир был бы совсем другим, умей люди такое. Однако есть на нашей планете существа, которые воспринимают окружающее пространство именно так, например змеи или тараканы.