Каким свойством обладают соответственные углы

Соответственные углы при параллельных прямых

Свойства фигур, формирующихся при пересечении секущей параллельных прямых, давно описаны в планиметрии. Известно, что соответственные накрест лежащие угловые элементы при параллельных прямых равны. Сложение угловых величин односторонних фигур дает значение 180 градусов. В геометрии применяется формула для расчета суммы соответственных парных угловых фигур при условии параллельности двух линий. Для определения этого параметра из числа 360 надо вычесть удвоенную угловую величину одностороннего угла, прилежащего к любому из пары рассчитываемых соответственных угловых элементов.

Каким свойством обладают соответственные углы

Равные соответственные углы указывают на параллельность прямых. Справедливость этого признака вытекает из следующих утверждений:

Каким свойством обладают соответственные углы

  1. Отметим отрезок на секущей, начало и конец которого, точки C и D, находятся в местах пересечения секущей с прямыми a и b.
  2. Через среднюю точку K отрезка опустим перпендикуляр к прямой a. Точки его пересечения с прямыми обозначим как A и B. Сформированные отрезками треугольники CKA и DKB являются прямоугольными, а отрезки AK и BK — сторонами, прилежащими к прямоугольным вершинам. Каждый из этих катетов одновременно является высотой треугольника, проведенной из остроугольной вершины.
  3. Для доказательства следует учитывать равенство вертикальных ∠CKA и ∠DKB, ∠BDK и ∠АСК равны по условию равенства соответственных углов с учетом того, что вертикальные углы с вершинами в точках C и D равны, CK и KD — два равных отрезка по условию.
  4. Таким образом, в треугольниках CKA и DKB сторона и прилежащие к ней углы имеют равные величины, что соответствует одному из признаков равенства треугольников.
  5. Поскольку AB перпендикулярен прямой a и отрезку AC, то CKA — прямоугольный треугольник, и это дает основание считать, что равный ему треугольник DKB также прямоугольный, из чего следует перпендикулярность отрезка AB по отношению к прямой b.
  6. Было доказано, что две прямые перпендикулярны к третьей прямой, и это подтверждает их параллельность.

Такого рода свойства встречаются в описаниях признаков и теорем. Их равенство — часть доказательств равенства и подобия треугольников. В свою очередь, используя признаки подобных и равных треугольников, можно обосновывать доказательства сложных теорем, находить решения сложных задач, править возможные ошибки.

Доказательство теоремы

Прямые являются параллельными, если сумма односторонних внутренних углов равна 180. Нужно доказать теорему по исходным данным. Секущая АВ является линией пересечения параллельных а и b.

Для доказательства теоремы можно допустить, что линии не являются параллельными, значит они пересекают друг друга в определенной точке С. Секущая АВ образует с а и b треугольник АВС, поскольку точка С лежит в одной из двух плоскостей относительно АВ. На линии а расположена сторона треугольника АС, а на b — ВС.

Если в противоположной полуплоскости отложить точку С1, то она образует с АВ другой треугольник АВС1. При этом по построению углы ВАС и АВС1 равны. Сумма САВ и СВА составляет 180, что указано в условии задачи. Следовательно, сторона АС1 принадлежит а, аналогично, ВС1 — линии b.

Точка пересечения С линий а и b принадлежит этим прямым. Вместе с тем точка С1 не может лежать на каждой из них, поскольку она находится в полуплоскости, где линии по построению не пересекаются.

Базисные понятия

Угол — простая фигура в геометрии, образуемая двумя лучами, следующими из некоторой точки. Эту точку определяют как его вершину. Название «угол» может относиться к части плоскости, объединяющей все лучи, исходящие из вершины фигуры. Такое обозначение может также иметь угловая мера, чаще всего определяемая в градусах.

В геометрии существует несколько критериев, позволяющих выделить разные типы угловых фигур. Они бывают тупыми и острыми, смежными или вертикальными. Для углов, образуемых в результате пересечения секущей линией двух прямых, в качестве такого критерия берется свойство взаимных соотношений формируемых при этом фигур. При рассмотрении произвольного геометрического рисунка, образованного двумя прямыми линиями и секущей, можно увидеть 4 пары соответственных, по 2 пары внутренних и внешних накрест лежащих или односторонних угловых фигур. Все эти элементы могут быть как тупоугольными, так и остроугольными.

Геометрия 7 класс

«Определение угла» — Вступительные слова. Запишите обозначения всех углов. Подготовительный этап урока. Закрасьте внутреннюю область угла. Интерес к предмету. Определение развёрнутого угла. Объяснение нового материала. Луч на рисунке делит угол. Определение угла. Угол разделяет плоскость. Острый угол. Луч исходит из вершины неразвёрнутого угла. Развитие логического мышления. Понятия внутренней и внешней областей угла.

«Геометрические задачи на построение» — Задачи на построение. Строка параметров включает в себя кнопки состояния полей и сами поля. Построение прямоугольника в ручном режиме. Проведем окружность того же радиуса. Построим две окружности радиуса ВС с центрами» в точках В и С. Задача. Практические задания по группам. Рассмотрим треугольники АСЕ и АВЕ. Построить окружность с центром в точке А и с радиусом АВ. Построение циркулем и линейкой.

««Измерение углов» 7 класс» — Как строятся и измеряются углы с помощью транспортира. Решение задач по готовым чертежам. Найдите угол, образованный биссектрисами углов. Измерение углов. Виды углов. Свойства углов. Измерим величину угла АОВ. Решение задач. Луч OV является биссектрисой угла ZOY. Лучи с общим началом в точке О.

«Треугольники» — Доказать. Стороны равны. Доказательство. Признак равенства треугольников. Признак равенства. Разносторонний. Понятие треугольника. Доказательства равенства треугольников. Каждый из треугольников. Теорема. Любой треугольник имеет три высоты. Треугольники равны. Треугольник. Любой треугольник имеет три биссектрисы. Медианы. Приложим треугольник. Сторона и два прилежащих к ней угла. Вершина. Медиана.

««Угол» 7 класс» — Прямые, которые не пересекаются. Угол, который составляет 90. Геометрическая фигура. Углом называется геометрическая фигура. Перпендикулярные прямые. Биссектрисой называется луч, который выходит из вершины угла. Половина угла. Прямые, которые пересекаются под углом 90. Задачи для устного счета. Вертикальные углы равны. Угол, который составляет 180. Прямым углом называется угол, который составляет 90.

«Второй и третий признаки равенства треугольников» — Решение задач. Медиана в равнобедренном треугольнике. Решение. Три стороны одного треугольника. Свойства равнобедренного треугольника. Углы. Периметр равнобедренного треугольника. Доказать. Стороны. Задача. Математический диктант. Второй и третий признаки равенства треугольников. Основание. Признаки равенства треугольников.

«Геометрия 7 класс»

Задача 3

Задача 3:

На рисунке , прямые m и n – биссектрисы углов 1 и 2. Докажите, что .

Рис. 7

Доказательство:

Из того, что , по свойству параллельных прямых вытекает, что  .

Следовательно, углы 3, 4, 5, 6 тоже будут равны между собой, как половинки равных углов.

Тогда из того, что , по первому признаку параллельности прямых  , что и требовалось доказать.

Список рекомендованной литературы

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. – М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. – М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. – М.: Просвещение, 2010.

Рекомендованные ссылки на интернет-ресурсы

  1. Признаки параллельности прямых (Источник).
  2. Признаки параллельности двух прямых (Источник).

Рекомендованное домашнее задание

  1. Докажите, что биссектрисы соответственных углов при параллельных прямых параллельны.
  2. Две параллельные прямые пересечены третьей прямой так, что сумма двух из полученных восьми углов равна 240. Найдите меры всех образованных углов.
  3. Через точку, не лежащую на прямой a, проведено три прямые. Докажите, что по крайней мере две из них пересекают прямую a.

Углы, образующиеся при пересечении прямых

Чтобы понять, как выглядят соответственные углы, а также уметь находить их на любых геометрических рисунках, нужно хорошо усвоить разницу между типами фигур, образованных секущей линией

Кроме того, следует обратить внимание на наличие внутренней и внешней областей. Первая зона ограничивается площадью между двумя прямыми, второй внешней областью считается неограниченное пространство снаружи от этих двух линий

Итак, образованным тремя прямыми линиями угловым фигурам можно дать следующие определения:

  • Накрест лежащие внутренние углы — это разносторонние по отношению к секущей объекты внутри области, сформированной прямыми. Если обе фигуры лежат за пределами двух прямых по противоположные стороны от секущей, то такие угловые элементы называются внешними накрест лежащими.
  • В отличие от предыдущих противолежащих фигур, односторонние углы расположены на одной стороне: внутри области, образованной двумя прямыми (внутренние), или во внешних областях (наружные).
  • Соответственные по определению являются парными фигурами, образующимися по одну сторону от линии, пересекающей две других, с аналогичных сторон обеих прямых. Один из углов пары расположен между прямыми и является внутренним, а другой лежит вне этой зоны, поэтому считается внешним.

Чтобы окончательно разобраться в вопросе, нужно усвоить понятие соответствия с математической точки зрения. В геометрии это свойство двух фигур, у которых углы, стороны или точки одного объекта аналогичны соответствующим элементам другого объекта. Аналогия проявляется не в их равенстве, а во взаимном соотношении элементов. О соответствии углов говорит аналогичное пространственное положение лучей в местах пересечения прямых с третьей секущей линией. Таким образом, речь идет об элементах, имеющих одинаковое относительное положение.

Соответственные углы при параллельных прямых

Свойства фигур, формирующихся при пересечении секущей параллельных прямых, давно описаны в планиметрии. Известно, что соответственные накрест лежащие угловые элементы при параллельных прямых равны. Сложение угловых величин односторонних фигур дает значение 180 градусов. В геометрии применяется формула для расчета суммы соответственных парных угловых фигур при условии параллельности двух линий. Для определения этого параметра из числа 360 надо вычесть удвоенную угловую величину одностороннего угла, прилежащего к любому из пары рассчитываемых соответственных угловых элементов.

Равные соответственные углы указывают на параллельность прямых. Справедливость этого признака вытекает из следующих утверждений:

  1. Отметим отрезок на секущей, начало и конец которого, точки C и D, находятся в местах пересечения секущей с прямыми a и b.
  2. Через среднюю точку K отрезка опустим перпендикуляр к прямой a. Точки его пересечения с прямыми обозначим как A и B. Сформированные отрезками треугольники CKA и DKB являются прямоугольными, а отрезки AK и BK — сторонами, прилежащими к прямоугольным вершинам. Каждый из этих катетов одновременно является высотой треугольника, проведенной из остроугольной вершины.
  3. Для доказательства следует учитывать равенство вертикальных ∠CKA и ∠DKB, ∠BDK и ∠АСК равны по условию равенства соответственных углов с учетом того, что вертикальные углы с вершинами в точках C и D равны, CK и KD — два равных отрезка по условию.
  4. Таким образом, в треугольниках CKA и DKB сторона и прилежащие к ней углы имеют равные величины, что соответствует одному из признаков равенства треугольников.
  5. Поскольку AB перпендикулярен прямой a и отрезку AC, то CKA — прямоугольный треугольник, и это дает основание считать, что равный ему треугольник DKB также прямоугольный, из чего следует перпендикулярность отрезка AB по отношению к прямой b.
  6. Было доказано, что две прямые перпендикулярны к третьей прямой, и это подтверждает их параллельность.

Такого рода свойства встречаются в описаниях признаков и теорем. Их равенство — часть доказательств равенства и подобия треугольников. В свою очередь, используя признаки подобных и равных треугольников, можно обосновывать доказательства сложных теорем, находить решения сложных задач, править возможные ошибки.

Базисные понятия

Каким свойством обладают соответственные углы

Угол — простая фигура в геометрии, образуемая двумя лучами, следующими из некоторой точки. Эту точку определяют как его вершину. Название «угол» может относиться к части плоскости, объединяющей все лучи, исходящие из вершины фигуры. Такое обозначение может также иметь угловая мера, чаще всего определяемая в градусах.

В геометрии существует несколько критериев, позволяющих выделить разные типы угловых фигур. Они бывают тупыми и острыми, смежными или вертикальными. Для углов, образуемых в результате пересечения секущей линией двух прямых, в качестве такого критерия берется свойство взаимных соотношений формируемых при этом фигур. При рассмотрении произвольного геометрического рисунка, образованного двумя прямыми линиями и секущей, можно увидеть 4 пары соответственных, по 2 пары внутренних и внешних накрест лежащих или односторонних угловых фигур. Все эти элементы могут быть как тупоугольными, так и остроугольными.

Доказательство подобия треугольников

Существует три признака, по которым могут быть определены подобные треугольники. Во-первых, подобие подтверждается пропорциональностью всех трех сторон треугольников. Во-вторых, подобными считаются треугольники, имеющие две пропорциональные стороны, угловая величина между которыми равна соответствующему элементу второго треугольника. В-третьих, подобие подтверждается, когда имеет место равенство двух углов обоих треугольников.

Рассмотрим доказательство этого признака, в ходе которого применяется свойство тождественности соответственных угловых объектов:

  1. Возьмем два треугольника ABC и A1B1C1, в которых равны два угла. Из этого следует, что величина третьего угла также одинакова в обеих фигурах. Требуется доказать подобие треугольников.
  2. Отметим точку A2 на AB таким образом, чтобы величина BA2 совпала с A1B1. Через A2 параллельно основанию AC проведем прямую, проходящую через BC в точке B2.
  3. Треугольники A2BC2 и A1B1C1 равны, что подтверждается одинаковыми величинами сторон A1B1, BA2 и углов B, B1 (по построению или условию), а также равенством углов A, A1 как соответственных при параллельных линиях.
  4. Поскольку, согласно лемме, параллельная стороне треугольника прямая отсекает от него подобный треугольник, то A2BC2 подобен ABC. Из этого следует подобие треугольников ABC и A1B1C1.

В сложных планиметрических фигурах в качестве секущей, формирующей этот тип геометрических объектов, может выступать медиана, биссектриса треугольника или какие-либо другие линии. Для решения таких задач требуется хорошее знание базовых понятий, признаков, свойств, аксиом, позволяющее заметить определенные соотношения и закономерности в том или ином задании.

Повторение

Параллельными называются такие прямые, которые не пересекаются.

 – прямые, с – секущая.

Рис. 1

Возникает много углов (1, 2, 3, 4, 5, 6, 7, 8).

Эти углы важны для нас, и поэтому они имеют названия:

— накрест лежащие углы: ∠3 и ∠5, ∠4 и ∠6;

— односторонние углы: ∠4 и ∠5, ∠3 и ∠6;

— соответственные углы: ∠1 и ∠5, ∠4 и ∠8, ∠2 и ∠6, ∠3 и ∠7.

Основные теоремы о параллельности прямых:

Рис. 2

Если накрест лежащие углы равны, то прямые параллельны. И наоборот, если прямые параллельны, то накрест лежащие углы равны.

Рис. 3

Если соответственные углы равны, то прямые параллельны. И наоборот, если прямые параллельны, то соответственные углы равны.

Рис. 4

Если сумма внутренних углов равна , то прямые параллельны. И наоборот, если прямые параллельны, то сумма внутренних углов равна .

Рассмотрим некоторые типовые задачи на признаки параллельности прямых.

Соевый соус

     
     
Редакция:
20.04.2017

Соевый соус – не только обязательное дополнение к роллам, но и важнейший ингредиент, который помог азиатской кухне завоевать любовь и почитание. В XVIII веке Европа заполучила не просто соевый продукт, а неисчерпаемое поле для кулинарной деятельности. Соусом заменяют соль, на его основе готовят маринады для мясных, рыбных,…

Углы, образующиеся при пересечении прямых

Чтобы понять, как выглядят соответственные углы, а также уметь находить их на любых геометрических рисунках, нужно хорошо усвоить разницу между типами фигур, образованных секущей линией

Кроме того, следует обратить внимание на наличие внутренней и внешней областей. Первая зона ограничивается площадью между двумя прямыми, второй внешней областью считается неограниченное пространство снаружи от этих двух линий

Итак, образованным тремя прямыми линиями угловым фигурам можно дать следующие определения:

Каким свойством обладают соответственные углы

  • Накрест лежащие внутренние углы — это разносторонние по отношению к секущей объекты внутри области, сформированной прямыми. Если обе фигуры лежат за пределами двух прямых по противоположные стороны от секущей, то такие угловые элементы называются внешними накрест лежащими.
  • В отличие от предыдущих противолежащих фигур, односторонние углы расположены на одной стороне: внутри области, образованной двумя прямыми (внутренние), или во внешних областях (наружные).
  • Соответственные по определению являются парными фигурами, образующимися по одну сторону от линии, пересекающей две других, с аналогичных сторон обеих прямых. Один из углов пары расположен между прямыми и является внутренним, а другой лежит вне этой зоны, поэтому считается внешним.

Чтобы окончательно разобраться в вопросе, нужно усвоить понятие соответствия с математической точки зрения. В геометрии это свойство двух фигур, у которых углы, стороны или точки одного объекта аналогичны соответствующим элементам другого объекта. Аналогия проявляется не в их равенстве, а во взаимном соотношении элементов. О соответствии углов говорит аналогичное пространственное положение лучей в местах пересечения прямых с третьей секущей линией. Таким образом, речь идет об элементах, имеющих одинаковое относительное положение.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий