Хромосомная теория наследственности. урок 6

Наследование пола

Хромосомная теория наследственности. урок 6

Генетика пола. Определение пола у разных организмов. Наследование дальтонизма

Большинство животных имеют особей двух полов. У некоторых растений – также (конопля, печеночный мох).

В среднем у большинства популяций соотношение полов является одинаковым. Такое соотношение вызвало у Г. Менделя аналогию с моногибридным анализирующим скрещиванием.

Знание хромосомного механизма определения пола позволяет объяснить причины появления мужских и женских особей в соотношении 1:1. Например, у человека:

Р: XX    ×    XY
G: X             X, Y
F: XX, XY

При оплодотворении яйца с Х-хромосомой мужским сперматозоидом с Х-хромосомой возникает женский пол (XX). Оплодотворение того же самого яйца сперматозоидом с Y-хромосомой обуславливает появление самца (XY). Одинаковая вероятность оплодотворения сперматозоидами двух типов обуславливает одинаковую вероятность образования мужского и женского полов.

Генетические карты хромосом

Генетические карты хромосом дрозофилы. Цифры указывают расстояние между генами и одним из концов хромосомы (в единицах перекреста)

Знание частоты рекомбинаций дает возможность составлять карты относительного расположения генов в хромосомах. На генетических картах гены расположены линейно один за другим на определенном расстоянии, которое определяется в процентах кроссинговера (частота рекомбинаций) или в морганидах (1 % кроссинговера равен одной морганиде). Чтобы построить генетическую карту растений или животных, проводят анализирующее скрещивание, где достаточно подсчитать процент особей, которые образовались вследствие кроссинговера. Необходимо также определить число групп сцепления и принадлежность генов к ним.

Например, частота рекомбинаций между генами равна: А и В – 8%, В и С – 6%. Этих данных недостаточно для составления карты, так как возможны варианты.

Необходимо знать расстояние между генами А и С.

Для человека невозможно применение метода скрещивания (гибридологического), поэтому его заменили методом анализа родословных.

Генетическая карта хромосом – это схема относительного размещения генов в одной хромосоме, которые принадлежат к одной группе сцепления.

Первые генетические карты были составлены для дрозофил, а потом и для других объектов.

Генетические карты составляют для каждой пары гомологичных хромосом. Каждая группа сцепления имеет свой порядковый номер (римскими цифрами) в зависимости от порядка открытия. Кроме номера в каждой группе сцепления указывается полное или сокращенное название генов, расстояние каждого гена в единицах кроссинговера от одного из концов хромосомы, место нахождения центромеры.

В 1930 году был разработан новый способ картирования хромосом, основанный на наличии в слюнных железах насекомых больших хромосом – политенных, имеющих хроматин в виде чередования темных и светлых дисков при окраске, которые видно даже при небольшом увеличении микроскопа. При выявлении дефектов в темных хроматиновых дисках сравнивали их с изменениями соответственно локализованных генов. Такие карты стали называть хромосомными (цитологическими). Генетические карты сравнивают с цитологическими. Цитологические карты хромосом определяют хромосому как физическое тело. Порядок генов в этих картах идентичен генетическим. Таким образом, генетические карты указывают на реальный порядок генов в хромосоме. Расстояние между генами на генетической карте приблизительно, так как нет соответствия возле центромеры – на генетической карте гены расположены плотнее, чем на хромосомной. Это связано со сниженной частотой кроссинговера возле центромеры. В других участках хромосомы наблюдается соответствие.

При картировании генов человека, кроме анализа родословных, используют другие методы. Одним из них является метод гибридизации соматических клеток грызунов и человека в культуре ткани. В гибридных клетках при размножении теряются одна или несколько хромосом изучаемого вида. После анализа большого количества клонов клеток отбирают 20-30, которые отличаются по набору хромосом. Если у всех клонов отсутствует хромосома и отсутствует изучаемый белок, а у других клонов есть белок и хромосома, делают вывод: синтез этого белка связан с этой хромосомой. Использование этого метода позволило за короткий срок составить генетические карты человека и животных.

Благодаря успехам в молекулярной генетике используют еще один метод картирования генов. ДНК гена выделяют с применением методов генной инженерии. Наносят раствор этих генов с меченной (радиоактивной или флуоресцентной) последовательностью ДНК на митотические хромосомы. Эти участки ДНК включаются в хромосомах на «свое» место, которое можно определить.

В 2003 году была выполнена программа «Геном человека» (запланированная ООН): расшифрован геном человека, изучены все 24 группы сцепления.

Для составления генетических карт прокариот используют другие методы, которые связаны с особенностями их строения. Прокариоты – гаплоидные организмы. Составление генетических карт прокариот строится на существовании особого процесса у бактерий – конъюгации.

Важность составления генетических карт заключается в использовании их в селекции растений, животных и микроорганизмов. Генетические карты человека могут быть полезными в развитии медицины и здравоохранения для диагностики, предотвращения и лечения трудных наследственных заболеваний

Хромосомное определение пола

У многих организмов есть пара хромосом, которая отвечает за наследование пола – половые хромосомы или гетерохромосомы. Они могут значительно отличаться между собой как по строению, так и по сохраняющейся в них генетической информации. Объединение половых хромосом в зиготе определяет пол нового организма.

Большую из этих хромосом обозначают X (икс-хромосома), меньшую – Y (игрек-хромосома). У некоторых организмов Y-xpoмосома может отсутствовать. Кариотип человека можно записать таким образом:

женщины – 44 А + XX, мужчины – 44 А + XY (А – аутосомы).

Пол с генотипом XX называют гомогаметным, так как образуются одинаковые гаметы с Х-хромосомами. Пол с генотипом XY называют гетерогаметным, так как половина гамет имеет Х-хромосому, а половина – Y.

У человека генотипический пол индивидуума определяют при изучении клеток, которые не делятся. Одна Х-хромосома всегда находится в активном состоянии, вторая (если она есть) – в состоянии покоя в виде плотного темноокрашенного тельца округлой формы размером 0,8-1,1 мкм, которое называют тельцем Барра. Количество телец Барра всегда на единицу меньше количества имеющихся Х-хромосом, то есть у мужского пола (XY) их нет совсем, у женского (XX) – одно.

X- и Y-хромосомы имеют разную структуру и содержат как гомологичные, так и негомологичные участки. У человека Y-xpoмосома контролирует дифференцирование семенников, что влияет на развитие половых органов и мужских признаков. У большинства организмов Y-хромосома не имеет генов, относящихся к полу. Y-хромосому называют генетически инертной, так как в ней мало генов.

Гены, определяющие мужские признаки, могут находиться в аутосомах и маскироваться наличием пары Х-хромосом. В присутствии одной Х-хромосомы мужские признаки проявляются. Такое наследование называют наследованием, ограниченным полом.

Чаще всего встречаются такие типы хромосомного определения пола:

  1. У многих двудомных растений, круглых червей, высших ракообразных, насекомых (кроме бабочек), некоторых рыб, болынинства амфибий, всех млекопитающих гомогаметным является женский пол (XX), гетерогаметным – мужской (XY).
  2. У бабочек, некоторых рыб, пресмыкающих, всех птиц гетерогаметен женский пол (XY или ZW), гомогаметен – мужской (XX или ZZ).
  3. У полутвердокрылых (клопов), прямокрылых (кузнечиков) – гомогаметен женский пол (XX), гетерогаметен – мужской (ХО).
  4. У моли, живородящей ящерицы – гетерогаметен женский пол (ХО), гомогаметен – мужской (XX).

У пчел, ос и муравьев нет половых хромосом: все самки – диплоидные (развиваются из оплодотворенных яиц), а самцы – гаплоидные (развиваются из неоплодотворенных яиц).

У некоторых животных определение пола зависит от внешних условий. Например, у некоторых рыб возникает вторичное переопределение пола. У морского червяка бонелии особи, которые в личиночной стадии остаются свободноплавающими, становятся самками. Личинки, которые прикрепляются к телу взрослой самки – превращаются в самцов под действием гормона, который она выделяет.

Подразделение

Теплоемкость газов делят на величину, определяемую при неизменном объеме (Cv), постоянном давлении (Ср).

В случае нагревания без изменения давления некоторое количество тепла расходуется на производство работы расширения газа, а часть энергии затрачивается для увеличения внутренней энергии.

Теплоемкость газов при постоянном давлении определяется количеством теплоты, которое расходуется на повышение внутренней энергии.

Хромосомная теория наследственности. урок 6

Особенности наследования рецессивных признаков, сцепленных с полом, у человека

У человека, как у всех млекопитающих, мужской пол гетерогаметный (XY), а женский пол гомогаметный (XX). Это означает, что у мужчин только одна Х- и одна Y-хромосома, а у женщин имеется две Х-хромосомы. В Х-хромосомах и Y-хромосомах есть небольшие гомологичные участки (псевдоаутосомные регионы). Наследование признаков, гены которых расположены в этих областях, аналогично наследованию аутосомных генов, и в этой статье оно не рассматривается.

Признаки, сцепленные с Х-хромосомой, могут быть рецессивными и доминантными. Рецессивные признаки не проявляются у гетерозиготных особей в присутствие доминантного признака. Так как у мужчин есть только одна Х-хромосома, мужчины не могут быть гетерозиготными по тем генам, которые находятся в Х-хромосоме. По этой причине у мужчин возможны всего два состояния X-сцепленного рецессивного признака:

  • при наличии в единственной Х-хромосоме аллеля, детерминирующего признак или расстройство, у мужчины проявляется таковой признак или расстройство, а все его дочери получают от него этот аллель вместе с Х-хромосомой (сыновья получат Y-хромосому);
  • если такового аллеля в единственной в Х-хромосоме нет, то у мужчины этот признак или расстройство не проявляется и потомству не передаётся.

Так как у женщин две Х-хромосомы, то для Х-сцепленных рецессивных признаков у них возможны три состояния:

  • аллель, определяющий этот признак или расстройство, отсутствует в обеих Х-хромосомах — признак или расстройство не проявляется и потомству не передаётся;
  • аллель, определяющий признак или расстройство, присутствует только в одной Х-хромосоме — признак или расстройство обычно не проявляется, а при наследовании примерно 50 % потомков получают от неё этот аллель вместе с Х-хромосомой (другие 50 % потомков получат другую Х-хромосому);
  • аллель, определяющий признак или расстройство, присутствует в обеих Х-хромосомах — признак или расстройство проявляется и потомству передаётся в 100 % случаев.

Некоторые расстройства, наследующиеся по X-сцепленному рецессивному типу, могут быть настолько тяжёлыми, что приводят к внутриутробной гибели плода. В этом случае среди членов семьи и среди их предков может не быть ни одного известного больного.

Женщины, которые имеют только одну копию мутации, называются носителями. Обычно такая мутация не выражается в фенотипе, то есть никак не проявляется. Отдельные заболевания с Х-сцепленным рецессивным наследованием всё же имеют некоторые клинические проявления у женщин-носителей вследствие механизма дозовой компенсации, благодаря которому в соматических клетках случайно инактивируется одна из Х-хромосом, и в одних клетках организма экспрессируется один Х-аллель, а в других — другой.

Множественное действие генов

Существует такое явление, когда на проявление состояний разных признаков влияет одна аллель. Называется оно множественным действием аллелей. Например, при заболевании человека арахнодактилией (человек имеет удлиненные пальцы конечностей, похожие на конечности паука) наблюдаются пороки сердца и неправильное положение хрусталика глаза. Арахнодактилия обусловлена мутацией доминантной аллели. Заболевание галактоземеем связано с рецессивной мутацией гена, который кодирует фермент, необходимый для усвоения клетками галактозы (молочного сахара). Вместе с заболеванием у людей развивается полоумие, цирроз печени, слепота.

Хромосомная теория наследственности и генетическая рекомбинация

Мейоз и случайное оплодотворение порождают генетические вариации среди потомства у организмов, размножающихся половым путем. О независимом наследовании Мендель узнал из скрещиваний, в которых он следил за двумя признаками гороха. Он увидел, что некоторые потомки имеют черты, которые не совпадают ни с одной из родительских. Скрещивая растения с жёлтыми круглыми семенами с растениями с зелёными морщинистыми, он получил также жёлтые морщинистые и зелёные круглые семена (рекомбинантные, или кроссоверные).

Но половина потомства унаследовала фенотип, который соответствует одному из родительских. Когда 50% всего потомства являются рекомбинантами, как в данном примере говорят, что существует частота рекомбинации равная 50%. Частота рекомбинации в 50% также наблюдаются для любых двух генов, расположенных на разных хромосомах.

Теперь давайте вернемся в «летную комнату» Моргана, чтобы посмотреть, как можно проиллюстрировать результаты тесткросса. Напомним, что большинство отпрысков по окраске тела и размерам крыла имел родительские фенотипы.

Это дало возможность предположить, что два гена были в одной хромосоме. Появления родительских типов в количестве больше 50% указывает на то, что гены связаны. Около 17% потомства, однако, были рекомбинантами, значит имел место кроссинговер.

При полном сцеплении в результате анализирующего скрещивания получается только 2 фенотипа в соотношении 1:1.

Хромосомная теория наследственности. урок 6Полное сцепление генов

Столкнувшись с этими результатами, Морган предложил, что какой-то процесс должен иногда прерывать физическое соединение между определенными аллелями генов одной хромосомы. Следующие эксперименты показали, что этот процесс, в настоящее время называемый кроссинговером, влияет на рекомбинацию связанных генов.

Гомологичные хромосомы спариваются во время профазы мейоз I (конъюгация), набор ферментов организует обмен (кроссинговер) сегментов отцовской и материнской хромосом. По сути, конечные части двух хроматид меняются местами каждый раз, когда происходит их пересечение.

Хромосомная теория наследственности. урок 6Законы сцепленного наследования

Гены.

Участок ДНК, в котором закодирована определенная полипептидная цепь, называется геном. Скажем, его фрагмент «TЦT ТГГ» кодирует аминокислотное звено: «серин-триптофан». Основная функция генов – поддержание жизнедеятельности организма путем производства белков в клетке, координация деления и взаимодействия клеток между собой.

Гены у разных индивидов даже одного вида могут различаться – в пределах, не нарушающих их функцию. Каждый ген может быть представлен одной или большим числом форм, называемых аллелями. Все клетки организма, кроме половых клеток, содержат по два аллеля каждого гена; такие клетки называют диплоидными. Если два аллеля идентичны, то организм называют гомозиготным по этому гену; если аллели разные, то – гетерозиготным.

Аллели эволюционно возникли и возникают как мутации – сбои в передаче ДНК от родителей к детям. Например, если бы в указанной выше нуклеотидной последовательности «TЦT ТГГ» третий нуклеотид, Т, ошибочно передался бы ребенку как Ц, то вместо родительского «серин-триптофан» он бы имел фрагмент белка «аланин-триптофан», поскольку триплет TЦЦ кодирует аминокислоту аланин. Аллели, прошедшие апробацию отбором (см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА), и образуют то наследственное разнообразие, которое мы сейчас наблюдаем, – от цвета кожи, глаз и волос до физиологических и эмоциональных реакций.

Сцепление с Y-хромосомой.

Сведения о генах, находящихся в Y-хромосоме, весьма скудны. Предполагается, что она практически не несет генов, обусловливающих синтез белков, необходимых для функционирования клетки. Но она играет ключевую роль в развитии мужского фенотипа. Отсутствие Y-хромосомы при наличии только одной X-хромосомы приводит к т.н. синдрому Тернера: развитию женского фенотипа с плохо развитыми первичными и вторичными половыми признаками и другими отклонениями от нормы. Встречаются мужчины с добавочной Y-хромосомой (XYY); они высокого роста, агрессивны и нередко аномального поведения. В Y-хромосоме выявлено несколько генов, ответственных за регуляцию синтеза специфических ферментов и гормонов, и нарушения в них приводят к патологиям полового развития. Имеется ряд морфологических признаков, которые, как полагают, определяются генами Y-хромосомы; среди них – развитие волосяного покрова ушей. Подобного рода признаки передаются только по мужской линии: от отца к сыну.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Как связь двух генов влияет на наследование?

Чтобы увидеть, как связь между генами влияет на наследование двух разных признаков, давайте рассмотрим еще один из экспериментов Моргана с дрозофилами. В этом случае будем следить за наследованием окраски тела и размеров крыльев мух.

Дикие плодовые мушки имеют серые тела и крылья нормального размера. Вдобавок к этим мухам Морган успел обзавестись мутантными особями с черными телами и крыльями намного меньше обычных – рудиментарными. Мутантные аллели являются рецессивными по отношению к аллелям дикого типа. Во время изучения наследования этих двух генов, Морган провел скрещивание, показанное на рисунке ниже.

Сначала он скрестил чистые линии этих мух с серым телом и нормальными крыльями (ААВВ) и с чёрным телом и зачаточными крыльями (аавв). Все гибриды первого поколения в соответствии с законом единообразия были серыми с нормальными крыльями (АаВв).

Хромосомная теория наследственности. урок 6

Скрестив между собой гибридов первого поколения (АаВв х АаВв) при полном сцеплении генов АВ и ав, мы бы получили соотношение по фенотипу 3:1.

Морган же провёл анализирующее скрещивание. Он скрестил дигетерозиготную (АаВв) самку из первого поколения с рецессивным дигомозиготным самцом (аавв). В потомстве было получено по 41,5 % особей с серым телом, нормальными крыльями и черным телом, зачаточными крыльями, а также по 8,5 % мух с серым телом, зачаточными крыльями и черным телом, нормальными крыльями.

Хромосомная теория наследственности. урок 6Неполное сцепление. Расщепление 1:1:1:1

Если бы гены, определяющие цвет тела и развитие крыльев, находились в разных парах хромосом, соотношение фенотипических классов было бы равным — по 25 %. Но этого не наблюдалось, значит, гены находятся в гомологичных хромосомах и наследуются сцепленно.

Несмотря на сцепление генов самка произвела не два, а четыре типа гамет, но гамет с исходным сочетанием (АВ, ав) было намного больше (83%), чем новых – Ав, аВ (17%).
Таким образом, Морган пришел к выводу, что цвет тела и размер крыла обычно наследуются вместе в специфических (родительских) комбинациях, потому что гены для активации этих признаков находятся рядом друг с другом на одной хромосоме.

Однако обе комбинации черт, не замеченные в родительском поколении, тоже были получены в экспериментах Моргана. Он предположил, что аллели цвета тела и размера крыла не всегда связаны — сцепление неполное. Чтобы проверить эту гипотезу, нужно было дальше исследовать генетическую рекомбинацию, применяя выведение потомства с комбинациями, отличающихся признаков, что были найдены у родителей.

Носители наследственности ДНК.

Многоклеточные организмы, как здания, сложены из миллионов кирпичиков – клеток. Основным «строительным» материалом клетки являются белки. У каждого типа белка – своя функция: одни входят в состав клеточной оболочки, другие – создают защитный «чехол» для ДНК, третьи передают «инструкции» о том, как производить белки, четвертые регулируют работу клеток и органов, и т.д. Каждая молекула белка представляет собой цепочку из многих десятков, даже сотен звеньев – аминокислот; такую цепь называют полипептидной. Сложные белки могут состоять из нескольких полипептидных цепей.

В процессе жизнедеятельности белки расходуются, и потому регулярно воспроизводятся в клетке. Их полипептидные цепи строятся последовательно – звено за звеном, и эта последовательность закодирована в ДНК. ДНК – длинная двухцепочечная молекула; состоит из отдельных звеньев – нуклеотидов. Всего имеется четыре типа нуклеотидов, обозначаемых как А (аденин), Г (гуанин), Т (тимин), Ц (цитозин). Тройка нуклеотидов (триплет) кодирует одну аминокислоту согласно т.н. генетическому коду. ДНК хранится в ядре клетки в виде нескольких «упаковок» – хромосом.