Прямой, тупой, острый и развернутый углы

Когда изучаются

Школьный курс геометрии разделён на два раздела: планиметрию и стереометрию

В каждом из них немалое внимание уделяется углам:

  • В планиметрии дается их основное понятие, происходит знакомство с их видами по величине. Более подробно изучаются свойства каждого вида треугольников. Появляются новые определения для учащихся – это геометрические фигуры, образованные при пересечении двух прямых между собой и пересечении нескольких прямых секущей.
  • В стереометрии изучаются пространственные углы – двугранные и трехгранные.

Внимание! В данной статье рассматриваются все виды и свойства углов именно в планиметрии

Правило встречается в следующих упражнениях:

7 класс

Задание 12,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 2,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 7,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 299,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 556,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 591,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 5,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 15,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 730,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 856,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Литература

  • Барабанов О.О. Начала истории прямого угла // История науки и техники, 2015. №1. С. 16-27.*
  • Сидоров Л. А. Угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1985. — Т. 5. — С. 459‒460. — 623 с. — 150 000 экз.
  • Двугранный угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1979. — Т. 2. — С. 50. — 552 с. — 150 000 экз.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 30‒31. — ISBN 5-94057-170-0.
  • Угломерные приборы/Угол (плоский) // Большая Советская энциклопедия (в 30 т.) / Гл. ред. А. М. Прохоров. — 3-е изд. — М.: «Советская Энциклопедия», 1977. — Т. XXVI. — С. 459‒460. — 624 с.
  • K. Menger. New Fondations of Euclidean Geometry (англ.) // THE AMERICAN JOURNAL OF MATHEMATICS 53 : журнал. — 1931. — P. 721‒745.

Практическое задание

1613. Назовите углы, изображенные на рисунке 168. Запишите их обозначения.

Прямой, тупой, острый и развернутый углы

Прямой, тупой, острый и развернутый углы

1614. Начертите четыре луча: ОА, ОВ, ОС и OD. Запишите названия шести углов, сторонами которых являются эти лучи. На сколько частей эти лучи делят плоскость?

1615. Укажите, какие точки на рисунке 169 лежат внутри угла КОМ, Какие точки лежат вне этого угла? Какие точки лежат на стороне OK, a какие — на стороне ОМ?

1616. Начертите угол MOD и проведите внутри него луч ОТ. Назовите и обозначьте углы, на которые этот луч делит угол MOD.

1617. Минутная стрелка за 10 мин повернулась на угол АОВ, за следующие 10 мин — на угол ВОС, а еще за 15 мин — на угол COD. Сравните углы АОВ и ВОС, ВОС и COD, АОС и АОВ, АОС и COD (рис. 170).

1618. Изобразите с помощью чертежного треугольника 4 прямых угла в разных положениях.

1619. С помощью чертежного треугольника найдите на рисунке 171 прямые углы. Запишите их обозначения.

1620. Укажите прямые углы в классной комнате.

1621. Начертите прямоугольник со сторонами 6 см и 4 см и квадрат со стороной 7 см.

Прямой, тупой, острый и развернутый углы1622. С помощью чертежного треугольника начертите две прямые, которые при пересечении образуют прямые углы. На сколько частей они делят плоскость? Сколько развернутых углов на чертеже?

1623. Начертите круг с центром О и радиусом 4,5 см. Разделите круг на четыре доли и закрасьте круга. 1624. Вычислите устно:

Прямой, тупой, острый и развернутый углы1625. Уменьшится или увеличится число, если его:

а) умножить на 2,5; 0,7; 0,01; 1,001; б) разделить на 2,5; 0,7; 0,01; 1,001?

1626. Расскажите, как найти 7% числа а. Найдите:

а) 8% от 400;                  г) 25% от 28; б) 30% от 20;                 д) 20% от 5. в) 10% от 46;

1627. Найдите число, если 5% этого числа равны:

20; 40; 100; 0,1; 0,6; 1,5.

1628. Составьте задачу по числовому выражению:

а) 0,09 • 200;                 б) 208 • 0,4;                  в) 130 • 0,1 + 80 • 0,1.

1629. Сколько процентов от 400 составляет число 200; 100; 4; 40; 80; 400; 600?

1630. Найдите пропущенное число:

а) 2 5 3                 б) 2 3 5 13 6                         12 1 2 3?                          42?

1631. Начертите квадрат, сторона которого равна длине 10 клеток тетради. Пусть этот квадрат изображает поле. Рожь занимает 12% поля, овес — 8%, пшеница — 64%, а остальная часть поля занята гречихой. Покажите на рисунке часть поля, занятую каждой культурой. Сколько процентов поля занимает гречиха?

1632. За учебный год Петя израсходовал 40% купленных в начале года тетрадей, и у него осталось 30 тетрадей. Сколько тетрадей было куплено для Пети в начале учебного года?

1633. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?

1634. Построенный в древности Александрийский маяк, который называли одним из семи чудес света, выше башен Московского Кремля в 1,7 раза, но ниже здания Московского университета на 119 м. Найдите высоту каждого из этих сооружений, если башни Московского Кремля на 49 м ниже Александрийского маяка.

1635. Найдите с помощью микрокалькулятора:

а) 4,5% от 168;                    в) 28,3% от 569,8; б) 147,6% от 2500;               г) 0,09% от 456 800.

1636. Решите задачу:

1) Площадь огорода 6,4 а. В первый день вскопали 30% огорода, а во второй день — 35% огорода. Сколько аров осталось еще вскопать?

2) У Сережи было 4,8 ч свободного времени. 35% этого времени он потратил на чтение книги, а 40% на просмотр передач по телевизору. Сколько времени у него еще осталось?

1637. Выполните действия:

1) ((23,79 : 7,8 — 6,8 : 17) • 3,04 — 2,04) • 0,85; 2) (3,42 : 0,57 • 9,5 — 6,6) : ((4,8 — 1,6) • (3,1 + 0,05)).

1638. Начертите угол ВАС и отметьте по одной точке внутри угла, вне угла и на сторонах угла.

1639. Какие из отмеченных на рисунке 172 точек лежат внутри угла АМК .Какая точка лежит внутри угла АМВ> но вне угла АМК .Какие точки лежат на сторонах угла АМК?

1640. Найдите с помощью чертежного треугольника прямые углы на рисунке 173.

1641. Постройте квадрат со стороной 43 мм. Вычислите его периметр и площадь.

Прямой, тупой, острый и развернутый углы1642. Найдите значение выражения:

а) 14,791 : а + 160,961 : b, если а = 100, b = 10; б) 361,62с + 1848 : d, если с = 100, d =100.

1644. В библиотеке было 8000 книг. Через год число их увеличилось на 2000 книг. На сколько процентов увеличилось число книг в библиотеке?

1645. Грузовики в первый день проехали 24% намеченного пути, во второй день — 46% пути, а в третий — остальные 450 км. Сколько километров проехали эти грузовики?

1646. Найдите, сколько составляют:

а) 1% от тонны;              в) 5% от 7 т; б) 1% от литра;               г) 6% от 80 км.

1647. Масса детеныша моржа в 9 раз меньше массы взрослого моржа. Какова масса взрослого моржа, если вместе с детенышем их масса равна 0,9 т?

1648. Во время маневров командир оставил 0,3 всех своих солдат охранять переправу, а остальных разделил на 2 отряда для обороны двух высот. В первом отряде было в 6 раз больше солдат, чем во втором. Сколько солдат было в первом отряде, если всего было 200 солдат?

Н.Я. ВИЛЕНКИН, B. И. ЖОХОВ, А. С. ЧЕСНОКОВ, C. И. ШВАРЦБУРД, Математика 5 класс, Учебник для общеобразовательных учреждений

Вариации и обобщения

Величиной ориентированного угла между прямыми AB{\displaystyle AB}и CD{\displaystyle CD} (обозначение: ∠(AB,CD){\displaystyle \angle (AB,CD)}) называют величину угла, на который нужно повернуть против часовой стрелки прямую AB{\displaystyle AB} так, чтобы она стала параллельна прямой CD.{\displaystyle CD.} При этом углы, отличающиеся на n·180° (n — целое число), считаются равными. Следует отметить, что ориентированный угол между прямыми CD{\displaystyle CD} и AB{\displaystyle AB} не равен ориентированному углу между прямыми AB{\displaystyle AB} и CD{\displaystyle CD} (они составляют в сумме 180° или, что по нашему соглашению то же самое, 0°). Ориентированные углы обладают следующими свойствами: а) ∠(AB,BC)=−∠(BC,AB);{\displaystyle \angle (AB,BC)=-\angle (BC,AB);} б) ∠(AB,CD)+∠(CD,EF)=∠(AB,EF);{\displaystyle \angle (AB,CD)+\angle (CD,EF)=\angle (AB,EF);} в) точки A,B,C,D,{\displaystyle A,B,C,D,} не лежащие на одной прямой, принадлежат одной окружности тогда и только тогда, когда ∠(AB,BC)=∠(AD,DC).{\displaystyle \angle (AB,BC)=\angle (AD,DC).}

Ряд практических задач приводит к целесообразности рассматривать угол как фигуру, получающуюся при вращении фиксированного луча вокруг точки О (из которой исходит луч) до заданного положения. В этом случае угол является мерой поворота луча. Такое определение позволяет обобщить понятие угла, расширив его область определения на всю числовую прямую (−∞;+∞){\displaystyle (-\infty ;+\infty )}: вводятся углы, большие 360°, в зависимости от направления вращения различают положительные и отрицательные углы. В тригонометрии такое рассмотрение позволяет изучать тригонометрические функции для любых значений аргумента.

Понятие угла обобщается на рассматриваемый в стереометрии телесный угол.

Телесный угол

Основная статья: Телесный угол

Обобщением плоского угла на стереометрию является телесный угол — часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол).

Телесные углы измеряются в стерадианах (одна из основных единиц СИ), а также во внесистемных единицах — в частях полной сферы (то есть полного телесного угла, составляющего 4π стерадиан), в квадратных градусах, квадратных минутах и квадратных секундах.

Телесными углами являются, в частности, следующие геометрические тела:

  • двугранный угол — часть пространства, ограниченная двумя пересекающимися плоскостями;
  • трёхгранный угол — часть пространства, ограниченная тремя пересекающимися плоскостями;
  • многогранный угол — часть пространства, ограниченная несколькими плоскостями, пересекающимися в одной точке.

Двугранный угол может характеризоваться как линейным углом (углом между образующими его плоскостями), так и телесным углом (в качестве вершины может быть выбрана любая точка на его ребре — прямой пересечения его граней). Если линейный угол двугранного угла (в радианах) равен φ, то его телесный угол (в стерадианах) равен 2φ.

Угол между кривыми

Угол между двумя кривыми в точке Р определяется как угол между касательными А и В в P.

Как в планиметрии, так и в стереометрии, а также в ряде других геометрий можно определить угол между гладкими кривыми в точке пересечения: по определению, его величина равна величине угла между касательными к кривым в точке пересечения.

Развернутый угол

Нам с вами уже известно, что любой угол делит плоскость на две части. Но, в случае, если у угла его обе стороны лежат на одной прямой, то такой угол называется развернутым. То есть, у развернутого угла одна его сторона является продолжением его другой стороны угла.

Теперь давайте посмотрим на рисунок, на котором как раз и изображен развернутый угол О.

Прямой, тупой, острый и развернутый углы

Если мы возьмем и проведем из вершины развернутого угла луч, то он разделит данный развернутый угол еще на два угла, которые будут иметь одну общую сторону, а другие два угла будут составлять прямую. То есть, с одного развернутого угла мы получили два смежных.

Если мы возьмем развернутый угол и проведем биссектрису, то эта биссектриса разделит развернутый угол на два прямых угла.

А, в том случае, если мы из вершины развернутого угла проведем произвольный луч, который не является биссектрисой, то такой луч разделит развернутый угол на два угла, один из которых будет острым, а другой тупым.

Угол в метрическом пространстве

Также существует ряд работ, в которых вводится понятие угла между элементами метрического пространства.

Пусть (X,ρ){\displaystyle (X,\rho )} — метрическое пространство. Пусть далее, x,y,z{\displaystyle x,y,z} — элементы этого пространства.

К. Менгер ввёл понятие угла между вершинами y{\displaystyle y} и z{\displaystyle z} с вершиной в точке x{\displaystyle x} как неотрицательное число yxz^{\displaystyle {\widehat {yxz}}}, которое удовлетворяет трём аксиомам:

  • yxz^=zxy^{\displaystyle {\widehat {yxz}}={\widehat {zxy}}}
  • yxz^={\displaystyle {\widehat {yxz}}=0} тогда и только тогда, когда ρ(y,z)=|ρ(x,y)−ρ(x,z)|{\displaystyle \rho (y,z)=|\rho (x,y)-\rho (x,z)|}
  • yxz^=π{\displaystyle {\widehat {yxz}}=\pi } тогда и только тогда, когда ρ(y,z)=ρ(x,y)+ρ(x,z){\displaystyle \rho (y,z)=\rho (x,y)+\rho (x,z)}

В 1932 году Вильсон рассмотрел в качестве угла следующее выражение:

yxz^w=arccos⁡ρ2(x,y)+ρ2(x,z)−ρ2(y,z)2ρ(x,y)ρ(x,z){\displaystyle {\widehat {yxz}}_{w}=\arccos {\frac {\rho ^{2}(x,y)+\rho ^{2}(x,z)-\rho ^{2}(y,z)}{2\rho (x,y)\rho (x,z)}}}

Нетрудно видеть, что введённое выражение всегда имеет смысл и удовлетворяет трём аксиомам Менгера.

Кроме того, угол Вильсона обладает тем свойством, что в евклидовом пространстве он эквивалентен углу между элементами y−x{\displaystyle y-x} и z−x{\displaystyle z-x} в смысле евклидова пространства.

Литература

  • Барабанов О.О. Начала истории прямого угла // История науки и техники, 2015. №1. С. 16-27.*
  • Сидоров Л. А. Угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1985. — Т. 5. — С. 459‒460. — 623 с. — 150 000 экз.
  • Двугранный угол // Математическая энциклопедия / И. М. Виноградов (гл. ред.). — М.: Советская энциклопедия, 1979. — Т. 2. — С. 50. — 552 с. — 150 000 экз.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 30‒31. — ISBN 5-94057-170-0.
  • Угломерные приборы/Угол (плоский) // Большая Советская энциклопедия (в 30 т.) / Гл. ред. А. М. Прохоров. — 3-е изд. — М.: «Советская Энциклопедия», 1977. — Т. XXVI. — С. 459‒460. — 624 с.
  • K. Menger. New Fondations of Euclidean Geometry (англ.) // THE AMERICAN JOURNAL OF MATHEMATICS 53 : журнал. — 1931. — P. 721‒745.

Обозначение углов

«∠», обозначение угла в геометрии.

Для обозначения угла имеется общепринятый символ: ∠,{\displaystyle \angle ,} предложенный в 1634 году французским математиком Пьером Эригоном.

В математических выражениях углы часто обозначают строчными греческими буквами: α, β, γ, θ, φ и др. Как правило, данные обозначения также наносятся на чертёж для устранения неоднозначности в выборе внутренней области угла. Чтобы избежать путаницы с числом пи, символ π, как правило, для этой цели не используется. Для обозначения телесных углов (см. ниже) часто применяют буквы ω и Ω.

Также часто угол обозначают тремя символами точек, например ∠ABC.{\displaystyle \angle ABC.} В такой записи B{\displaystyle B} — вершина, а A{\displaystyle A} и C{\displaystyle C} — точки, лежащие на разных сторонах угла. В связи с выбором в математике направления отсчёта углов против часовой стрелки, точки, лежащие на сторонах в обозначении угла принято перечислять также против часовой стрелки. Это соглашение позволяет обеспечить однозначность при различении двух плоских углов с общими сторонами, но различными внутренними областями. В тех случаях, когда выбор внутренней области плоского угла ясен из контекста, либо указывается другим способом, данное соглашение может нарушаться.
См. .

Реже используются обозначения прямых, образующих стороны угла. Например, ∠(bc){\displaystyle \angle (bc)} — здесь предполагается, что имеется в виду внутренний угол треугольника ∠BAC{\displaystyle \angle BAC}, α, который надо было бы обозначить ∠(cb){\displaystyle \angle (cb)}.

Так, для рисунка справа записи γ, ∠ACB{\displaystyle \angle ACB} и ∠(ba){\displaystyle \angle (ba)} означают один и тот же угол.

Иногда для обозначения углов используются строчные латинские буквы (a, b, c, …) и цифры.

На чертежах углы отмечаются небольшими одинарными, двойными или тройными дужками, проходящими по внутренней области угла с центрами в вершине угла. Равенство углов может отмечаться одинаковой кратностью дужек или одинаковым количеством поперечных штрихов на дужке. Если необходимо указать направление отсчёта угла, оно отмечается стрелкой на дужке. Прямые углы отмечаются не дужками, а двумя соединёнными равными отрезками, расположенными таким образом, что вместе со сторонами они образуют небольшой квадрат, одна из вершин которого совпадает с вершиной угла.

Типы углов

В зависимости от величины углы называются следующим образом.

  • Нулевой угол (0°); стороны нулевого угла совпадают, его внутренняя область — пустое множество.
  • Острый угол (от 0° до 90°, не включая граничные значения).
  • Прямой угол (90°); стороны прямого угла перпендикулярны друг другу.
  • Тупой угол (от 90° до 180°, не включая граничные значения).
  • Косой угол (любой, не равный 0°, 90°, 180° или 270°).
  • Развёрнутый угол (180°); сторонами развёрнутого угла являются две полупрямые одной прямой, то есть два луча, направленных в противоположные стороны.
  • Выпуклый угол (от 0° до 180° включительно)[источник не указан 186 дней].
  • Невыпуклый угол (от 180° до 360°, не включая граничные значения)[источник не указан 186 дней].
  • Полный угол (360°) — см. оборот (единица измерения).

См. также: Центральный угол

Угол и скалярное произведение

Понятие угла можно определить для линейных пространств произвольной природы (и произвольной, в том числе бесконечной размерности), на которых аксиоматически введено положительно определённое скалярное произведение (x,y){\displaystyle (x,y)} между двумя элементами пространства x{\displaystyle x} и y.{\displaystyle y.} Скалярное произведение позволяет определить также и так называемую норму (длину) элемента как квадратный корень произведения элемента на себя ||x||=(x,x).{\displaystyle ||x||={\sqrt {(x,x)}}.} Из аксиом скалярного произведения следует неравенство Коши — Буняковского (Коши — Шварца) для скалярного произведения: |(x,y)|⩽||x||⋅||y||,{\displaystyle |(x,y)|\leqslant ||x||\cdot ||y||,} откуда следует, что величина (x,y)||x||⋅||y||{\displaystyle {\frac {(x,y)}{||x||\cdot ||y||}}} принимает значения от −1 до 1, причём крайние значения достигаются тогда и только тогда, когда элементы пропорциональны (коллинеарны) друг другу (говоря геометрически — их направления совпадают или противоположны). Это позволяет интерпретировать отношение (x,y)||x||⋅||y||{\displaystyle {\frac {(x,y)}{||x||\cdot ||y||}}} как косинус угла между элементами x{\displaystyle x} и y.{\displaystyle y.} В частности, элементы называют ортогональными, если скалярное произведение (или косинус угла) равно нулю.

В частности, можно ввести понятие угла между непрерывными на некотором интервале a,b{\displaystyle } функциями, если ввести стандартное скалярное произведение (f,g)=∫abf(x)g(x)dx,{\displaystyle (f,g)=\int _{a}^{b}f(x)g(x)dx,} тогда нормы функций определяются как ||f||2=∫abf2(x)dx.{\displaystyle ||f||^{2}=\int _{a}^{b}f^{2}(x)dx.} Тогда косинус угла определяется стандартным образом как отношение скалярного произведения функций к их нормам. Функции также можно назвать ортогональными, если их скалярное произведение (интеграл их произведения) равно нулю.

В римановой геометрии можно аналогично определить угол между касательными векторами с помощью метрического тензора gij.{\displaystyle g_{ij}.} Скалярное произведение касательных векторов u{\displaystyle u} и v{\displaystyle v} в тензорной записи будет иметь вид: (u,v)=gijuivj,{\displaystyle (u,v)=g_{ij}u^{i}v^{j},} соответственно нормы векторов — ||u||=|gijuiuj|{\displaystyle ||u||={\sqrt {|g_{ij}u^{i}u^{j}|}}} и ||v||=|gijvivj|.{\displaystyle ||v||={\sqrt {|g_{ij}v^{i}v^{j}|}}.} Поэтому косинус угла будет определяться по стандартной формуле отношения указанного скалярного произведения к нормам векторов: cos⁡θ=(u,v)||u||⋅||v||=gijuivj|gijuiuj|⋅|gijvivj|.{\displaystyle \cos \theta ={\frac {(u,v)}{||u||\cdot ||v||}}={\frac {g_{ij}u^{i}v^{j}}{\sqrt {|g_{ij}u^{i}u^{j}|\cdot |g_{ij}v^{i}v^{j}|}}}.}

Что такое угол?

Углом называют фигуру, образованную двумя лучами, выходящими из одной точки (рис. 160). Лучи, образующие угол, называют сторонами угла, а точку, из которой они выходят, — вершиной угла. На рисунке 160 сторонами угла являются лучи ОА и ОБ, а его вершиной — точка О. Этот угол обозначают так: АОВ.

При записи угла в середине пишут букву, обозначающую его вершину. Угол можно обозначить и одной буквой — названием его вершины.

Например, вместо «угол АОВ» пишут короче: «угол О».

Вместо слова «угол» пишут знак .

Например, AОВ, O.

На рисунке 161 точки С и D лежат внутри угла АОВ, точки X и У лежат вне этого угла, а точки М и Н — на сторонах угла.

Как и все геометрические фигуры, углы сравниваются с помощью наложения.

Если один угол можно наложить на другой так, что они совпадут, то эти углы равны.

Например, на рисунке 162 ABC = MNK.

Прямой, тупой, острый и развернутый углы

Из вершины угла СОК (рис. 163) проведен луч ОР. Он разбивает угол СОК на два угла — СОР и РОК. Каждый из этих углов меньше угла СОК.

Пишут: COP < COK и POK < COK.

Центральный и вписанный угол

Любой конкретной дуге окружности можно сопоставить единственный центральный и бесконечное множество вписанных углов.

  • Центральный угол — угол с вершиной в центре окружности. Величина центрального угла равна градусной мере дуги, заключённой между сторонами этого угла.
  • Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Величина вписанного угла равна половине градусной меры дуги, ограниченной его сторонами. Все вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол θ равен половине величины центрального угла 2θ, , опирающегося у основания на окружности на ту же самую дугу (розового цвета). То есть угол θ не меняет своей величины от вершины к вершине, взятой на окружности (зелёный и голубой углы). Внешний угол для вписанного с другой стороны угла окружности имеет ту же величину θ (коричневого цвета)

Величина вписанного угла равна половине величины центрального угла, опирающегося у основания на окружности на ту же самую дугу (см. рис.).

Плоские углы

Термин плоский угол употребляется как синоним термина угол, определённого в начале статьи, для отличия его от употребляемого в стереометрии понятия (в том числе двугранного, трёхгранного или многогранного угла).

Под свойствами плоских углов нередко понимают соотношения величин углов (смежных, дополнительных, прилегающих, вертикальных — см. ниже) в случае, когда углы лежат в одной плоскости (для планиметрии это подразумевается само собой, однако для стереометрии уточнение необходимо, иначе перечисленные ниже соотношения не имеют места, а сами углы, если не лежат в одной плоскости, не называются смежными или прилегающими (вертикальные всегда лежат в одной плоскости автоматически).

Вертикальные и прилежащие углы

  • Вертикальные углы — два угла, которые образуются при пересечении двух прямых, эти углы не имеют общих сторон. Другими словами — два угла называют вертикальными, если стороны одного угла являются продолжением сторон другого. Их основное свойство: вертикальные углы равны.
  • Прилежащие углы — два угла, имеющие общую вершину и одну из сторон, но не пересекающиеся внутренними областями, лежащими в одной плоскости. Величина угла, образованного внешними (не общими) сторонами прилежащих углов равна сумме величин самих прилежащих углов (на рисунке α + β).

Частные случаи прилежащих углов.

Плоские углы с (анти)параллельными сторонами

Углы с параллельными сторонами.

Углы, стороны которых попарно параллельны и сонаправлены (или попарно параллельны и противоположно направлены), равны друг другу. Пара углов, у которых одна пара сторон параллельна и сонаправлена друг другу, а вторая пара сторон параллельна и противоположно направлена, составляют в сумме по величине развёрнутый угол, то 180° (см. рисунок) — поскольку их можно параллельным переносом превратить в смежные углы («склеив» сонаправленные стороны).

Внешний угол треугольника

Основная статья: Теорема о внешнем угле треугольника

Теорема о внешнем угле треугольника. Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с внешним углом.

Углы многоугольника

Основная статья: Теорема о сумме углов многоугольника

Сумма внутренних углов αi произвольного n-угольника без самопересечений равна ∑i=1nαi=(n−2)⋅180∘.{\displaystyle \sum _{i=1}^{n}\alpha _{i}=(n-2)\cdot 180^{\circ }.}

Так,

  • сумма внутренних углов треугольника равна 180°,
  • четырёхугольника — 360°,
  • пятиугольника — 540° и так далее.

Следствие

Назовём внешним углом βi (внимание, это не обычное определение внешнего угла) угол, дополняющий внутренний угол αi до полного угла: βi = 360° − αi.

Сумма внешних углов произвольного n-угольника без самопересечений равна ∑i=1nβi=n⋅360∘−∑i=1nαi=(n+2)⋅180∘.{\displaystyle \sum _{i=1}^{n}\beta _{i}=n\cdot 360^{\circ }-\sum _{i=1}^{n}\alpha _{i}=(n+2)\cdot 180^{\circ }.}

Определение и измерение

Прямой, тупой, острый и развернутый углыПриступая к изучению, первоначально определяют, что такое угол в планиметрии.

Если на плоскости взять определённую точку и провести от нее два произвольных луча, то получим геометрическую фигуру – угол, состоящую из следующих элементов:

  • вершина – та точка, из которой и проводились лучи, обозначается заглавной буквой латинского алфавита,
  • стороны – полупрямые, проведенные из вершины.

Все элементы, образующие рассматриваемую нами фигуру, разбивают плоскость на две части:

  • внутренняя в планиметрии не превышает 180 градусов,
  • внешняя.

Принцип измерения углов в планиметрии объясняют на интуитивной основе. Для начала знакомят учащихся с понятием развернутый угол.

Важно! Угол называется развернутым, если полупрямые, выходящие из его вершины, образуют прямую линию. Неразвернутый угол это все остальные случаи

Если его разделить на 180 равных частей, то принято считать меру одной части равной 10. В таком случае говорят, что измерение производится в градусах, а градусная мера такой фигуры составляет 180 градусов.

Вывод

В этой статье представлены все основные виды углов, которые встречаются в планиметрии и изучаются в седьмом классе. Во всех последующих курсах свойства, касающихся всех рассмотренных элементов, являются основой для дальнейшего изучения геометрии. К примеру, изучая параллелограмм, необходимо будет вспомнить все свойства углов, образованных при пересечении двух параллельных прямых секущей. При изучении особенностей треугольников, необходимо вспомнить, что такое смежные углы. Перейдя в стереометрию, все объёмные фигуры будут изучаться и строиться, опираясь на планиметрические фигуры.