Выбор телескопа: чем отличаются рефлекторы и рефракторы

Предельная звёздная величина (m)

Предельная звёздная величина, которая видна в телескоп, в зависимости от апертуры:
m=2.1+5*lg(D), где D – диаметр телескопа в мм., lg — логарифм.
Если возьмётесь расчитывать, то увидите, что предельная звёздная величина,
доступная нашему глазу через самый большой «магазинный» телескоп с апертурой 300мм — около 14,5m.
Более слабые объекты ищутся через фотографирование и последующую компьютерную обработку кадров.

Предельные звёздные величины (m) в зависимости от апертуры телескопа (D)
D, мм m D, мм m
32 9,6 132 12.7
50 10,6 150 13
60 11 200 13,6
70 11,3 250 14,1
80 11,6 300 14,5
90 11,9 350 14,8
114 12,4 400 15,1
125 12,6 500 15,6

На деле значения будут немного отличаться из-за разницы световых потерь в разных конструкция телескопов.
При одинаковой апертуре D, выше всего предельная звёздная величина в линзовых телекопах-рефракторах.
В зеркальных рефлекторах потери выше — очень грубо можно отнять 10-15%.
В катадиопртиках потери самые большие, соответственно и предельная звёздная величина самая маленькая.
Также велики потери в биноклях из-за наличия нескольких преломляющих призм — их я имел ввиду, дав диаметры 32 и 50 мм.
То есть, в биноклях предельная звёздная величина будет гораздо меньше табличной. На сколько — зависит от качества марки бинокля, в частности от качества просветляющего покрытия всех поверхностей — это нельзя предсказать для всех моделей.
Сложные и дорогие окуляры тоже задерживают свет за счёт большего количества линз — неизбежная плата за качество изображения
(хотя, их качественные просветляющие покрытия частично снижают этот недостаток).
То есть, при одинаковой апертуре, в линзовый телескоп-рефрактор с самым простеньким окуляром вы увидите максимум возможного при данном D.
Но, поскольку, рефракторы больших диаметров дороги, то за те же деньги можно взять гораздо более апертуристый рефлектор и увидеть значительно больше.

Крупнейшие оптические телескопы

Телескопы-рефракторы

Обсерватория Местонахождения Диаметр, см / дюйм Год сооружения / демонтажа Примечания
Телескоп всемирной Парижской выставки 1900 года. Париж 125 / 49.21″ 1900 / 1900 Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата.
Йеркская обсерватория Уильямс Бэй, Висконсин 102 / 40″ 1897
Обсерватория Лика гора Гамильтон, Калифорния 91 / 36″ 1888
Парижская обсерватория Медон, Франция 83 / 33″ 1893 Двойной, визуальный объектив 83 см, фотографический — 62 см.
Потсдамский астрофизический институт Потсдам, Германия 81 / 32″ 1899 Двойной, визуальный 50 см, фотографический 80 см.
Обсерватория Ниццы Франция 76 / 30″ 1880
Пулковская обсерватория Санкт-Петербург 76 / 30″ 1885
Обсерватория Аллегейни Питтсбург, Пенсильвания 76 / 30″ 1917
Гринвичская обсерватория Гринвич, Великобритания 71 / 28″ 1893
Гринвичская обсерватория Гринвич, Великобритания 71 / 28″ 1897 Двойной, визуальный 71 см, фотографический 66
Обсерватория Архенхольда Берлин, Германия 70 / 27″ 1896 Самый длинный современный рефрактор

Солнечные телескопы

Обсерватория Местонахождения Диаметр, м Год сооружения
Китт-Пик Тусон, Аризона 1,60 1962
Сакраменто-Пик Санспот, Нью-Мексико 1,50 1969
Крымская астрофизическая обсерватория Крым 1,00 1975
Шведский солнечный телескоп Пальма, Канары 1,00 2002
Китт-Пик, 2 штуки в общем корпусе с 1,6 метра Тусон, Аризона 0,9 1962
Тейде Тенерифе, Канары 0,9 2001
Саянская солнечная обсерватория, Россия Монды, Бурятия 0,8 1975
Китт-Пик Тусон, Аризона 0,7 1973
Институт физики Солнца, Германия Тенерифе, Канары 0,7 1988
Митака Токио, Япония 0,66 1920

Камеры Шмидта

Обсерватория Местонахождения Диаметр коррекционной пластины — зеркала, м Год сооружения
Обсерватория Карла Шварцшильда Таутенбург, Германия 1,3-2,0 1960
Паломарская обсерватория гора Паломар, Калифорния 1,2-1,8 1948
Обсерватория Сайдинг-Спринг Кунабарабран, Австралия 1,2-1,8 1973
Токийская астрономическая обсерватория Токио, Япония 1,1-1,5 1975
Европейская южная обсерватория Ла-Силья, Чили 1,1-1,5 1971

Телескопы-рефлекторы

Название Местонахождения Диаметр зеркала, м Год сооружения
Гигантский южно-африканский телескоп, SALT Сатерленд, ЮАР 11 2005
Большой Канарский телескоп Пальма, Канарские острова 10,4 2002
Телескопы Кек Мауна-Кеа, Гавайи 9,82 × 2 1993, 1996
Телескоп Хобби-Эберли, HET Джефф-Дэвис, Техас 9,2 1997
Большой бинокулярный телескоп, LBT гора Грэхем (англ.), Аризона 8,4 × 2 2004
Очень большой телескоп, ESO VLT Серро Параналь, Чили 8,2 × 4 1998, 2001
Телескоп Субару Мауна-Кеа, Гавайи 8,2 1999
Телескоп Северный Джемини, GNT Мауна-Кеа, Гавайи 8,1 2000
Телескоп Южный Джемини, GST Серро Пашон, Чили 8,1 2001
Мультизеркальный телескоп (англ.), MMT гора Хопкинс (англ.), Аризона 6,5 2000
Магеллановы телескопы Лас Кампанас, Чили 6,5 × 2 2002
Большой телескоп азимутальный, БТА гора Пастухова, Россия 6,0 1975
Большой Зенитный телескоп, LZT Мейпл Ридж, Канада 6,0 2001
Телескоп Хейла, MMT гора Паломар, Калифорния 5,08 1948

Экстремально большие телескопы

Основная статья: ELT

(Экстремально большой телескоп)

Название Изображение(рисунок) Диаметр (м) Площадь (м²) Главноезеркало Высотам Дата первого света
Европейский чрезвычайно большой телескоп(E-ELT) 39 1116 м² 798 × 1,45 м шестиугольных сегментов 3060 2024 год
Тридцатиметровый телескоп (TMT) 30 655 м² 492 × 1,45 м шестиугольных сегментов 4050 2022 год
Гигантский Магелланов телескоп (GMT) 24,5 368 м² 7 × 8,4 м 2516 2021 год

Замечание о нормальном увеличении оптических инструментов.

Как в телескопе, так и в микроскопе изображение, полученное с помощью объектива, рассматривается глазом через окуляр. Для того, чтобы реализовать полностью разрешающую способность объектива система окуляр–глаз не должна вносить дополнительных дифракционных искажений. Это достигается целесообразным выбором увеличения оптического инструмента (телескопа или микроскопа). При заданном объективе задача сводится к подбору окуляра. На основании общих соображений волновой теории можно сформулировать следующее условие, при котором будет полностью реализована разрешающая способность объектива: диаметр пучка лучей, выходящих из окуляра не должен превышать диаметра зрачка глаза d3p . Таким образом, окуляр оптического инструмента должен быть достаточно короткофокусным

Поясним это утверждение на примере телескопа. На рис. 2.6 изображен телескопический ход лучей.

Рисунок 2.6.

Телескопический ход лучей

Две близкие звезды, находящиеся на угловом расстоянии min в фокальной плоскости объектива изображаются дифракционными пятнами, центры которых располагаются на расстоянии minF1. Пройдя через окуляр, лучи попадут в глаз под углом minF1/F2 . Этот угол должен быть разрешимым для глаза, зрачок которого имеет диаметр d3p. Таким образом:

Здесь  = F1/F2 – угловое увеличение телескопа. Отношение D/ имеет смысл диаметра пучка, выходящего из окуляра. Знак равенства в (4.10) соответствует случаю нормального величения.

(2.11)

В случае нормального увеличения диаметр пучка лучей, выходящих из окуляра, равен диаметру зрачка d3p . При >N в системе телескоп–глаз полностью используется разрешающая способность объектива. Аналогичным образом решается вопрос об увеличении микроскопа. Под увеличением микроскопа понимают отношение углового размера объекта, наблюдаемого через микроскоп, к угловому размеру самого объекта, наблюдаемого невооруженным глазом на расстоянии наилучшего зрения d, которое для нормального глаза полагается равным 25 см. Расчет нормального увеличения микроскопа приводит к выражению:

(2.12)

Вывод формулы (2.12) является полезным упражнением для студентов. Как и в случае телескопа, нормальное увеличение микроскопа есть наименьшее увеличение, при котором может быть полностью использована разрешающая способность объектива. Следует подчеркнуть, что применение увеличений больше нормального не может выявить новые детали объекта. Однако, по причинам физиологического характера при работе на пределе разрешения инструмента целесообразно иногда выбирать увеличение, превосходящее нормальное в 2–3 раза.

Телескопы рефлекторы

Большинство любительских телескопов-рефлекторов имеет фокаль­ные отношения f/6 — f/8; по сравнению с рефракторами они удобнее при наблюдениях, для которых требуются более широкое поле зрения и меньшее увеличение.

Телескопы-рефлекторы бывают разных типов. В практике любительских наблюдений чаще всего используются рефлекторы двух типов: системы Ньютона и системы Кассегрена.

В телескопе системы Ньютона вторичное зеркало плоское, поэтому фокусное расстояние и фокальное отношение объектива постоянны. В телескопе системы Кассегрена вторичное зеркало выпуклое, что зна­чительно увеличивает общее фокусное расстояние телескопа и тем самым изменяет его эффективное фокальное отношение. По этой причине рефлекторы системы Кассегрена находят применение при наблюдениях того же типа, что и телескопы-рефракторы.

Выбор телескопа: чем отличаются рефлекторы и рефракторы

Телескоп типа рефлектор

Самое большое преимущество рефлекторов — их низкая стоимость. При той же апертуре они значительно дешевле телескопов любого другого типа. Кроме того, нужное зеркало для объектива рефлектора можно изготовить собственными силами или в крайнем случае — прос­то купить, а трубу такого телескопа нетрудно собрать в домашних условиях.

Практически все любительские телескопы с большой собирающей поверхностью (диа­метры объектива свыше 200 мм) являются рефлекторами. Минималь­ный диаметр объектива рефлекторов, которые обычно используют для общих наблюдений, составляет около 150 мм; такой рефлектор стоит не дороже рефрактора с объективом диаметром 75 мм. По­скольку рефлектор имеет большую собирающую поверхность, в него можно наблюдать более слабые объекты, однако он не столь ком­пактен, как рефрактор.

Рефлекторы меньших размеров, имеющие малые фокальные отношения, по своим характеристикам занимают промежуточное положение между биноклями и обычными рефлек­торами; к тому же они достаточно компактны.

Однако у рефлекторов есть и недостатки. Наиболее существенные из них — необходимость время от времени обновлять отражающие, покрытия и юстировать оптические элементы. При отсутствии до­рогостоящего оптического стекла, герметически закрывающего трубу рефлектора, приходится укрывать каждое зеркало телескопа крышкой или чехлом, чтобы воспрепятствовать проникновению пыли.

При наблюдениях окуляр в телескопе системы Ньютона может оказаться в неудобном положении; чтобы избежать этого, следует предусмотреть возможность вращения трубы телескопа.

Если труба рефлектора не закрыта герметически оптическим ок­ном, то холодный наружный воздух, проникая в нее, создает там воздушные потоки, ухудшающие изображение. Весьма эффективным средством борьбы с этим недостатком может быть использование больших теплоизоляционных труб, но чаще для этой цели применяют «трубы» скелетной конструкции.

К сожалению, в последнем случае возникают другие проблемы, связанные с потоками теплого воздуха от самого наблюдателя (так что при наблюдениях старайтесь одевать больше теплоизолирующей одежды!). Кроме того, при этом увели­чивается выпадение росы на оптические элементы. Поэтому большое значение приобретает правильная конструкция самой обсерватории.

Выбор телескопа: чем отличаются рефлекторы и рефракторы

Катадиоптрический (зеркально-линзовый) телескоп

Разрешающая способность (b)

Разрешающая способность телескопа — наименьший угол между такими двумя близкими звездами, когда они уже видны как две, а не сливаются зрительно в одну.
Проще говоря, под разрешающей способностью можно понимать «чёткость» изображения (да простят меня профессионалы-оптики…).
b=138/D, где D — апертура объектива. Измеряется в секундах (точнее в секундах дуги).
Из-за атмосферы эта величина нечасто бывает меньше 1″ (1 секунды). Например, на Луне 1″ соответствует кратеру диаметром около 2 км.
Для длиннофокусных объективов, со значением светосилы 1:12 и более длинных, формула немного другая: b=116/D (по Данлопу).

Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1″ достигается при апертуре 150мм у рефлекторов
и около 125мм у планетников-рефракторов.
Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера,
либо в те редкие дни, когда «с погодой везёт»…
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты.
Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько,
что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1»,
а вот маленький телескоп упрётся в это ограничение и будет очень обидно…
Так что, нет особого смысла ограничиваться 150-ю миллиметрами 😉

Параметры телескопа:

Типовые увеличения:

Максимальное (2D) (с окуляром ) (?)

Максимальное увеличение телескопа рассчитывается как удвоенный диаметр объектива. Обычно нет
смысла ставить увеличения выше этого значения. При увеличениях, больше максимального, будет сложно
сфокусировать изображение, усилятся вибрации изображения, при этом никакого выигрыша по количеству
деталей не будет. Обычно применяется при наблюдении тесных двойных звезд и юстировке телескопа.
При отличных условиях наблюдения может применяться для наблюдения деталей на диске планет, Луны и
Солнца.

Разрешающее (1.4D) (с окуляром ) (?)

При разрешающем увеличении как правило достигается предел по разрешающей способности телескопа.
Повышение увеличения выше разрешающего обычно не дает значительного эффекта по разрешению деталей изображения.
Если атмосферные условия позволяют, можно поднимать увеличение выше этого значения, чтобы рассмотреть объект
в более крупном масштабе. С этим увеличением обычно наблюдают детали на диске планет, Луны и Солнца.

Большое (1D) (с окуляром ) (?)

Большое увеличение применяют при обзоре диска Луны и Солнца, наблюдении спутников планет, а также
наблюдении крупных деталей на дисках планет.

Проницающее (0.7D) (с окуляром ) (?)

Проницающее увеличение является типовым увеличением для наблюдения большинства объектов глубокого
космоса (мелкие галактики, планетарные туманности и звездные скопления).

Среднее (D/2) (с окуляром ) (?)

Среднее увеличение обычно применяют при наблюдениях туманностей и ярких галактик.

Умеренное (D/3) (с окуляром ) (?)

Умеренное увеличение обычно применяют при наблюдениях ярких и крупных объектов каталога Мессье.

Равнозрачковое (D/6) (с окуляром ) (?)

Равнозрачковое увеличение является минимальным увеличением телескопа. При равнозрачковом увеличении
достигается такой размер выходного зрачка, который соответствует максимальному зрачку человеческого глаза
(обычно он равен 6мм). При меньших увеличениях размер выходного зрачка будет расти и часть света просто
не попадет в зрачок глаза, поэтому нет смысла ставить увеличения ниже равнозрачкового.

Другие параметры:

Относительное отверстие (?)

Относительное отверстие определяется как отношение диаметра объектива к фокусному расстоянию телескопа.
Относительное отверстие обычно выражается в виде дроби 1/K или f/K. Телескопы с относительным отверстием
от f/4 до f/6 как правило называют «светосильными». Такие телескопы предназначены и для визуальных
наблюдений, и для астрономической фотографии. Телескопы, у которых относительное отверстие лежит в пределах
от f/6 до f/15 больше подходят для визуальных наблюдений нежели для фотографии. На таких телескопах обычно
проще получить большие увеличения.

Разрешающая способность (?)

Разрешающая способность телескопа — это угловой размер объектов и деталей на них, которые можно различить
в этот телескоп при отличных условиях наблюдения.

Предельная звездная величина (?)

Предельная величина звезд, которую можно увидеть в этот телескоп при отличных условиях наблюдения.

Максимальное поле зрения (?)

Максимальное поле зрения, которое можно получить на этом телескопе. Максимальное поле зрения
определяется размером полевой диафрагмы окуляра, который установлен в телескоп. Для фокусера
размером 1.25 дюйма максимальный размер полевой диафрагмы обычно принимается равным 27мм, а
для фокусера размером 2 дюйма — 45мм.

Размер кратеров на Луне (?)

Кратеры такого размера можно увидеть на Луне в этот телескоп при отличных условиях наблюдения.

Урок 22 Телескопы и их характеристики. Методы астрофизических исследований. Всеволновая астрономия

Тема. Телескопы и их характеристики. Методы астрофизических исследований. Всеволновая астрономия

Цели урока.

Учащиеся должны знать:

1.  Назначение телескопов.

2.  Телескопы во всех диапазонах электромагнитных волн.

3.  Методы астрофизических исследований.

Основные понятия. Телескопы. Астрофизические исследования.

Демонстрационный материал. Модели телескопы.

Мировоззренческий аспект урока. Формирование научного подхода к изучению Вселенной во всём диапазоне электромагнитных волн.

. Работа с интерактивным моделями

План урока

Краткое содержание урока

Формы

использования

планетария

Время, мин

Приемы и методы

I. Актуализация знаний. Методы астрофизических исследований

3

Сообщение учителя

II. Изучение нового материала

Иллюстрации

модель

15

Беседа,

объяснение учителя

III. Закрепление материала.

Иллюстрации, планетарий

10

Объяснение учителя, беседа

IV. Самостоятельная работа с планетарием и подвижной картой.

Планетарий

15

самостоятельная работа

V. Домашнее задание

2

Запись на доске учителя

Конспект урока.

I. Методы астрофизических исследований

Астрономия изучает строение Вселенной, движение, физическую природу, происхождение и эволюцию небесных тел и образованных ими систем. Астрономия исследует также фундаментальные свойства окружающей нас Вселенной.

Классические оптические схемы

Схема Галилея

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Схема рефрактора Галилея

Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях, и иногда в самодельных любительских телескопах.

Схема Кеплера

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Схема рефрактора Кеплера

Иоганн Кеплер в г. усовершенствовал телескоп, заменив рассеивающую линзу в окуляре собирающей. Это позволило увеличить поле зрения и вынос зрачка, однако система Кеплера даёт перевёрнутое изображение. Преимуществом трубы Кеплера является также и то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу. По сути, все последующие телескопы-рефракторы являются трубами Кеплера. К недостаткам системы относится сильная хроматическая аберрация, которую до создания ахроматического объектива устраняли путём уменьшения относительного отверстия телескопа.

Схема Ньютона

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Оптическая схема телескопа Ньютона

Такую схему телескопов предложил Исаак Ньютон в 1667 году. Здесь плоское диагональное зеркало, расположенное вблизи фокуса, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но если относительное отверстие не слишком большое, оно может быть и сферическим [источник не указан 842 дня].

Схема Грегори

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Оптическая схема телескопа Грегори

Эту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota. Главное зеркало в таком телескопе — вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад — в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния.

Схема Кассегрена

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Оптическая схема телескопа Кассегрена

Схема была предложена Лораном Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало вогнутое (в оригинальном варианте параболическое). Оно отбрасывает лучи на меньшее вторичное выпуклое зеркало (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет много как зеркальных модификаций, включая апланатичный Ричи-Кретьен, со сферической формой поверхности вторичного (Долл-Кирхем) или первичного зеркала, так и зеркально-линзовых.

Отдельно стоит выделить систему Кассегрена, модифицированную советским оптиком Д. Д. Максутовым — , ставшую одной из самых распространённых систем в астрономии, особенно в любительской.

Схема Ричи-Кретьена

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Оптическая схема телескопа Ричи—Кретьена—Кассегрена

Система Ричи — Кретьена — усовершенствованная система Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы — около 4°.

2.2.2. Характеристики телескопа window.top.document.title = «2.2.2. Характеристики телескопа»;


Выбор телескопа: чем отличаются рефлекторы и рефракторы
Рисунок 2.2.2.1.Устройство телескопа-рефрактора

К оптическим телескопам относят, прежде всего, рефракторы и рефлекторы.

Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Чтобы избежать хроматической аберрации, линзовые объективы делают составными. Однако в случаях, когда требуется свести к минимуму рассеяние в системе, приходится использовать и одиночную линзу. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.

Самый большой рефрактор в мире, который находится в Йеркской обсерватории в США, имеет линзу диаметром в 1 м. Линза с большим диаметром была бы слишком тяжела и сложна в изготовлении.


Выбор телескопа: чем отличаются рефлекторы и рефракторы
Рисунок 2.2.2.2.Рефрактор Йеркской обсерватории в США

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Рисунок 2.2.2.3.Устройство телескопа-рефлектора

Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия). Точность изготовления поверхности зеркала, т.е. максимально допустимые отклонения от заданной формы, зависит от длины волны света, на которой будет работать зеркало. Точность должна быть лучше, чем λ/8. К примеру, зеркало, работающее в видимом свете (длина волны λ = 0,5 микрона), должно быть изготовлено с точностью 0,06 мкм (0,00006 мм).

Обращенная к глазу наблюдателя оптическая система называется окуляром. В простейшем случае окуляр может состоять только из одной положительной линзы (в этом случае мы получим сильно искаженное хроматической аберрацией изображение).

Важнейшими характеристиками телескопа (помимо его оптической схемы, диаметра объектива и фокусного расстояния) являются проницающая сила, разрешающая способность, относительное отверстие и угловое увеличение.

Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:

где D – диаметр объектива в миллиметрах.

Диаметр объектива, мм Предельная звездная величина
60 11,0m
100 12,1m
200 13,6m
500 15,6m
1000 17,1m
Таблица 2.2.2.1

Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно. Если невооруженным глазом можно различить две звезды с угловым расстоянием не менее 2′, то телескоп позволяет уменьшить этот предел в Γ раз. Ограничение на предельное увеличение накладывает явление дифракции – огибание световыми волнами краев объектива. Из-за дифракции вместо изображения точки получаются кольца. Угловой размер центрального пятна (теоретическое угловое разрешение)

Разрешающая способность может вычисляться по формуле:

δD

Для видимых длин волн при λ = 550 нм на телескопе с диаметром D = 1 м теоретическое угловое разрешение будет равно δ = 0,1″. Практически угловое разрешение больших телескопов ограничивается атмосферным дрожанием. При фотографических наблюдениях разрешающая способность всегда ограничена земной атмосферой и погрешностями гидирования и не бывает лучше 0,3″. При наблюдениях глазом из-за того, что можно попытаться поймать момент, когда атмосфера относительно спокойна (достаточно нескольких секунд), разрешающая способность у телескопов с диаметром D, большим 2 м, может быть близка к теоретической. Хорошим считается телескоп, собирающий более 50 % излучения в кружке 0,5″.

Относительное отверстие – отношения диаметра D к фокусному расстоянию F:

Выбор телескопа: чем отличаются рефлекторы и рефракторы
Модель 2.4.
Телескоп

У телескопов для визуальных наблюдений типичное значение относительного отверстия 1/10 и меньше. У современных телескопов она равна 1/4 и больше.

Часто вместо относительного отверстия используется понятие светосилы, равной (D/F)2. Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.

Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:

диафрагмой

Угловое увеличение (или просто увеличение) показывает, во сколько раз угол, под которым виден объект при наблюдении в телескоп, больше, чем при наблюдении глазом. Увеличение равно отношению фокусных расстояний объектива и окуляра:

Главная 
 Онлайн учебники 
 Подготовка по всем предметам онлайн 
 Подготовка к ЕГЭ онлайн