Как работает процессор?

Оперативная память

Также одним из важнейших компонентов компьютера является оперативная память, или как ее еще называют ОЗУ (оперативно запоминающее устройство). В отличие от жесткого диска в оперативной памяти содержится временная информация. То есть при запуске игры сама игра находится на жестком диске, а действия, которые происходят в игре на данный момент на экране, хранятся на оперативно запоминающем устройстве. Почему именно так, а не на жестком диске? Так как у ОЗУ скорость пропускная память в десятки раз выше, чем у основного диска компьютера, то именно в ней хранятся промежуточные данные. Во время загрузки локации в игре нужно быстро подгрузить файлы, а для этого нужно их пропустить через оперативную память или жесткий диск. Так как пропуск через жесткий диск будет в разы дольше, используется оперативная память.

Как работает процессор?

Выбор процессора

Теперь, когда мы узнали все основы и четко понимаем, что такое тактовая частота и техпроцесс или почему количество ядер не стоит путать с количеством потоков, нам осталось выбрать подходящий центральный процессора для нашего компьютера.

К сожалению, здесь тоже всё не так просто.

Вот небольшой пример — если Intel Core i3-8100 будет идеальным решением для офиса (работа в Microsoft Office, 1С, почтовыми программами и т. д.), то он едва ли сможет обеспечить стабильный FPS в современных и требовательных играх.

Как не запутаться в таком обилии и разнообразии различных центральных процессоров и выбрать подходящий процессор именно вам? В этом сложном вопросе вам поможет наша статья «Как выбрать процессор для компьютера? Какой процессор лучше: AMD или Intel?», в которой мы постарались доходчиво разобрать все основные моменты, связанные с выбором центрального процессора.

Виды процессоров

Существует два основных широко распространенных производителя процессоров: AMD и Intel. Они выпускают самые востребованные, доступные и производительные модели. Их мы можем увидеть практически на каждом компьютере или игровой приставке, например, на том же PlayStation или Xbox.

Все плюсы и минусы могут меняться, т.к. каждый год выходят новые модели, которые кардинально отличаются друг от друга. Но эти моменты, свойственны практически всем моделям этих производителей.

Intel — плюсы и минусы

  • Низкое энергопотребление и температура работы
  • Хорошая производительность в ПО для обработки графики и видео
  • Не такие зависимые от оперативной памяти
  • Лучше показывают себя в многозадачности
  • Цена довольно высокая по сравнению с АМД
  • Графический чип, если он есть, не такой производительный, как у конкурента
  • Работа с архивами не такая быстрая, как хотелось бы
  • Разгон не такой вариативный

AMD — плюсы и минусы

  • Высокая производительность в играх
  • Многие модели довольно «горячие», но не все
  • Адекватная цена
  • Отличная скорость работы с разными программами и архивами
  • Графический чип, если он есть — показывает хорошие результаты
  • Хорошие возможности разгона
  • Зависимые от ОЗУ

Основные характеристики процессоров

Мы рассмотрели, что такое процессор компьютера, как он работает

Ознакомились с тем, что из себя представляют два основных их вида, время обратить внимание на их характеристики

Итак, для начала их перечислим: бренд, серия, архитектура, поддержка определенного сокета, тактовая частота процессора, кэш, количество ядер, энергопотребление и тепловыделение, интегрированная графика. Теперь разберем с пояснениями:

Бренд – кто производит процессор: AMD, или Intel. От данного выбора зависит не только цена приобретения, и производительность, как можно было бы предположить из предыдущего раздела, но также и выбор остальных комплектующих ПК, в частности, материнской платы. Поскольку процессоры от АМД и Интел имеют различную конструкцию и архитектуру, то в сокет (гнездо для установки процессора на материнской плате) предназначенный под один тип процессора, нельзя будет установить второй;
Серия – оба конкурента делят свою продукцию на множество видов и подвидов. (AMD — Ryzen, FX,. Intel- i5, i7);
Архитектура процессора – фактически внутренние органы ЦП, каждый вид процессоров имеет индивидуальную архитектуру. В свою очередь один вид можно разделить на несколько подвидов;
Поддержка определенного сокета — очень важная характеристика процессора, поскольку сам сокет является «гнездом» на материнской плате для подсоединения процессора, а каждый вид процессоров требует соответствующий ему разъем. Собственно об этом было сказано выше. Вам либо нужно точно знать какой сокет расположен на вашей материнской плате и под нее подбирать процессор, либо наоборот (что более правильно);
Тактовая частота – один из значимых показателей производительности ЦП. Давайте ответим на вопрос что такое тактовая частота процессора. Ответ будет простым для этого грозного термина — объем операций выполняющихся в единицу времени, измеряющийся в мегагерцах (МГц);
Кэш — установленная прямо в процессор память, её ещё называют буферной памятью, имеет два уровня — верхний и нижний. Первый получает активную информацию, второй – неиспользуемую на данный момент. Процесс получения информации идет с третьего уровня во второй, а потом в первый, ненужная информация проделывает обратный путь;
Количество ядер — в ЦП их может быть от одного до нескольких. В зависимости от количества процессор будет называться двухъядерных, четырех ядерным и т.д. Соответственно от их числа будет зависеть мощность;
Энергопотребление и тепловыделение

Тут все просто – чем выше процессор «съедает» энергии, тем больше тепла он выделит, обращайте внимание на этот пункт, чтобы выбрать соответствующий кулер охлаждения и блок питания.
Интегрированная графика – у AMD первые такие разработки появились в 2006, у Intel с 2010. Первые показывают больший результат, чем конкуренты

Но все равно, до флагманских видеокарт пока ни один из них не смог дотянуть.

Хранение информации — регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр — минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set — Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) — это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической — SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической — конденсаторы. SRAM быстрее, а DRAM дешевле.

Характеристики

Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:

  • Тактовая частота; Для обработки одного фрагмента данных, передаваемых внутри ПК, требуется один такт времени. Отсюда следует, что чем выше тактовая частота приобретаемого ЦП, тем быстрее работает устройство обрабатывая за раз большие массивы информации. Измеряется тактовая частота в мегагерцах. Один мегагерц эквивалентен 1 миллиону тактов в секунду. Старые модели имели маленькую частоту, из-за чего скорость работы оставляла желать лучшего. Современные модели имеют большие показатели тактовой частоты, позволяя быстро обрабатывать и выполнять самые сложные наборы команд.
  • Разрядность; Информация, предназначенная для обработки ЦП, попадает в него через внешние шины. От разрядности зависит какой объем данных передается за один раз. Это влияет на быстродействие. Старые модели были 16 разрядными, а современные имеют 32 или 64 разряда. 64 разрядная система на сегодняшний день считается самой продвинутой и под нее разрабатываются современные программные продукты и устройства.
  • Кеш – память; Используется для увеличения работы устройства в компьютере, создавая буферную зону, хранящую копию последнего массива данных, обработанного процессором. Это дает возможность быстро выполнить схожую операцию в случае необходимости, без траты времени на обращение к общей памяти персонального компьютера.
  • Сокет; Вариант крепления устройства к материнской плате. Разные поколения процессоров, как и материнских плат имеют собственный поддерживаемых сокетов. Это стоит учитывать при покупке. У разных производителей сокеты также отличаются друг от друга.
  • Внутренний множитель частоты; Процессор и материнская плата работают на разных частотах и для их синхронизации друг с другом существует множитель частоты. Базовой или опорной считается рабочая частота материнской платы, которая умножается на персональный коэффициент ЦП.

Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются вспомогательные системы охлаждения.

Ускорители и будущее процессоров

Еще одна важная функция, которая все чаще появляется в процессорах — ускорители для конкретных задач. Эти ускорители представляют собой небольшие схемы, главная цель которых — как можно быстрее выполнить определенную задачу. Этой задачей может быть шифрование, кодирование данных или машинное обучение. 

Конечно, процессор может делать все это самостоятельно, но созданный конкретно для этой цели блок будет намного более эффективен. Наглядным показателем мощностей ускорителей будет сравнение встроенного графического процессора с дискретной видеокартой. Разумеется, процессор может выполнять вычисления, необходимые для обработки графики, но наличие отдельного блока обеспечивает намного более высокую производительность. С ростом числа ускорителей фактическое ядро центрального процессора может занимать всего лишь небольшую часть чипа.

На первом рисунке снизу изображено устройство процессора Intel, выпущенного более десяти лет назад, где большая часть занята ядрами и кешем, а на втором показан гораздо более современный чип от AMD. Как мы видим, во втором случае большая часть кристалла отведена не под ядра, а под другие компоненты.

Как работает процессор?

Кристалл процессора Intel первого поколения архитектуры Nehalem

Обратите внимание: ядра и кэш занимают подавляющее часть площади.

Как работает процессор?

Кристалл системы на чипе от AMD. Много места отведено под ускорители и внешние интерфейсы. 

Что такое процессор (CPU)?

Процессор, что это вообще такое? Зачем он нужен? За какие задачи он отвечает?

Для большинства неопытных и технически неподготовленных пользователей процессором зачастую выступает весь системный блок в сборе. Но это относительно ошибочное суждение, процессор — это нечто, что сокрыто за стенками корпуса и толстым радиатором с вентилятором для его охлаждения.

Процессор или, как его еще называют, центральный процессор (Central Processing Unit) — это электронное устройство (интегральная схема), которое выполняет и обрабатывает машинные инструкции, код программ (машинный язык) и отвечает за все логические операции, которые протекают внутри вашей операционной системы и системного блока.

Без преувеличения, процессор можно назвать мозгом (или сердцем, это кому как больше нравится) любого компьютера, мобильного устройства или другого периферийного устройства. Да-да, слово процессор применимо не только к вашему системному блоку, но и планшету, смарт-холодильнику, игровой приставке, фотоаппарату и другой электронике.

Внешне процессор выглядит как квадратный (или прямоугольный) элемент или плата, в нижней части которой располагается контактная группа для подключения, в вверху находится сам кристалл процессора, который сокрыт под металлической крышкой, чтобы исключить возможность повреждения хрупкого кристалла процессора, а также крышка помогает при отводе тепла с поверхности кристалла на радиатор системы охлаждения.

Кристалл процессора состоит из кремния. Если точнее, полупроводники, из которых состоит процессор, производятся из кремния. На кремневой пластине кристалла в несколько слоёв располагается несколько триллиардов транзисторов (размер которых составляет порядка ~10 нм в зависимости от используемого техпроцесса при производстве), которые отвечают за все логические операции процессора.

На самом деле это только поверхностное описание того, из чего состоит процессор, и оно предназначено, скорее, для визуализации того, что из себя представляет процессор внутри. На самом деле все намного сложнее. К сожалению, просто и доходчиво объяснить все принципы создания и работы процессора не так просто, здесь потребуются знания как элементарной алгебры, так и продвинутой физики и электротехники, да и большинству пользователей это попросту не нужно.

Впоследствии производители процессоров научились располагать на печатной плате, помимо самого кристалла процессора, кристалл видеоядра (видеокарты), что позволило исключить необходимость в отдельной дискретной видеокарте для вывода изображения на монитор.

Подводя итог этого блока статьи и что бы дать простой ответ на такой сложный вопрос «Что такое процессор (CPU)» — процессор это сердце любого современного устройства, которое выполняет все основные операции, будь то простое сложение 2+2, набор текста в Microsoft Word или расчет физической модели в Blender.

Что такое процессор или CPU?

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) — который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году  — Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро — здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд — этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш — область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры — это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер — 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор — отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина — для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных — для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации — позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска — для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C — предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP — содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP — адрес данных в оперативной памяти;
  • Z — содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

История появления процессоров

Теперь, когда всё стало немного понятнее и слово процессор у вас не ассоциируется с системным блоком, давайте совершим небольшой экскурс в историю и посмотрим, как появились процессоры и что вообще способствовало их появлению.

Первые ЭВМ (электронно-вычислительные машины) появились в 40-х годах прошлого века. Изначально в их основе использовались лампы и примитивные радиоэлементы по типу резисторов и реле. Размер таких ЭВМ мог достигать нескольких квадратных метров.

Как работает процессор?На фотографии изображена первая ЭВМ — ENIAC. Ее вес составлял порядка 30 тон, и внутри располагалось 18000 электронных ламп.

Но прогресс не стоит на месте, и в 50-х годах громоздкие электронные лампы сменили транзисторы, которые, в свою очередь, в 60-х годах были вытеснены интегральными микросхемами, которые вмещали в себя уже тысячи таких транзисторов.

Всё изменилось в 1971 году, когда компания Intel представила первую 4-битную однокристальную микросхему Intel 4004. Именно Intel 4004 можно считать первым прародителем процессоров, нежели более ранние прототипы по типу электронных ламп и транзисторов. После Intel 4004 индустрия развития стала шагать семимильными шагами, и каждый год инженерам и конструкторам удавалось разработать более современный микропроцессор, который был мощнее и производительней своего приемника.

Мы умышленно не будем перечислять огромный перечень процессоров в силу того, что это уже получится полноценная, отдельная статья про историю процессоров. Поверьте, там есть о чём рассказывать.

В 1993 году компанией Intel был представлен первый полноценный десктоп процессор первого поколения P5, который впоследствии был переименован в Pentium.

Но не стоит полагать, что двигателем прогресса была только компания Intel, свой вклад в индустрию электроники и центральных процессоров внесли такие компании, как Motorola, Zilog, MOS Technology, Sinclair Research (ZX Spectrum). СССР тоже не отставали, и в 70-х годах Российские разработки в области ЭВМ вполне могли потягаться с зарубежными аналогами. Но в силу того, что СССР перенаправила силы из этой области в другие отраслевые технологии, было принято решение отказаться от собственного производства и впоследствии использовать сертифицированные импортные технологии.

Серверный вид

Серверные – зачастую используются в терминалах для управления огромными массивами информации. Также они способны работать параллельно с несколькими подключенными клиентами, если на сервер установлена профильная ОС и используется соответствующее ПО.

От настольных отличаются куда большим числом ядер (но с низкой частотой), очень высоким объемом кеш-памяти, поддержкой регистровой оперативной памяти до 1–2 ТБ (дополнительная проверка данных на целостность и коррекция ошибок на лету).Как работает процессор?По внешнему виду так сразу и не отличишь(в некоторых случаях), какой процессор представляет серверный и настольный сегмент. Здесь уже нужны базовые знания в плане маркировки серий.

Intel AMD
Настольные Серверные Настольные Серверные
Atom (D) Atom (C, E, S) Athlon Opteron
Celeron Xeon A‑Series Epyc
Pentium Xeon Phi Ryzen
Core Itanium

Характеристики процессора

Тактовая частота указывает частоту, на которой работает ЦП. За $1$ такт выполняется несколько операций. Чем выше частота, тем выше быстродействие ПК. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): $1$ ГГц = $1$ миллиард тактов в секунду.

Для повышения производительности ЦП стали использовать несколько ядер, каждое из которых фактически является отдельным процессором. Чем больше ядер, тем выше производительность ПК.

Процессор связан с другими устройствами (например, с оперативной памятью) через шины данных, адреса и управления. Разрядность шин кратна 8 (т.к. имеем дело с байтами) и отличается для разных моделей, а также различна для шины данных и шины адреса.

Разрядность шины данных указывает на количество информации (в байтах), которое можно передать за $1$ раз (за $1$ такт). От разрядности адресной шины зависит максимальный объем оперативной памяти, с которым может работать ЦП.

От частоты системной шины зависит количество данных, которые передаются за отрезок времени. Для современных ПК за $1$ такт можно передать несколько бит. Важна также и пропускная способность шины, равная частоте системной шины, умноженной на количество бит, которые можно передать за $1$. Если частота системной шины равна $100$ Мгц, а за $1$ такт передается $2$ бита, то пропускная способность равна $200$ Мбит/сек.

Пропускная способность современных ПК исчисляется в гигабитах (или десятках гигабит) в секунду. Чем выше этот показатель, тем лучше.
На производительность ЦП влияет также объем кэш-памяти.

Данные для работы ЦП поступают из оперативной памяти, но т.к. память медленнее ЦП, то он может часто простаивать. Во избежание этого между ЦП и оперативной памятью располагают кэш-память, которая быстрее оперативной. Она работает как буфер. Данные из оперативной памяти посылаются в кэш, а затем в ЦП. Когда ЦП требует следующее данное, то при наличии его в кэш-памяти оно берется из него, иначе происходит обращение к оперативной памяти. Если в программе выполняется последовательно одна команда за другой, то при выполнении одной команды коды следующих команд загружаются из оперативной памяти в кэш. Это сильно ускоряет работу, т.к. ожидание ЦП сокращается.

Замечание 1

Существует кэш-память трех видов:

  • Кэш-память $1$-го уровня самая быстрая, находится в ядре ЦП, поэтому имеет небольшие размеры ($8–128$ Кб).
  • Кэш-память $2$-го уровня находится в ЦП, но не в ядре. Она быстрее оперативной памяти, но медленнее кэш-памяти $1$-го уровня. Размер от $128$ Кбайт до нескольких Мбайт.
  • Кэш-память $3$-го уровня быстрее оперативной памяти, но медленнее кэш-памяти $2$-го уровня.

От объема этих видов памяти зависит скорость работы ЦП и соответственно компьютера.

ЦП может поддерживать работу только определенного вида оперативной памяти: $DDR$, $DDR2$ или $DDR3$. Чем быстрее работает оперативная память, тем выше производительность работы ЦП.

Следующая характеристика – сокет (разъем), в который вставляется ЦП. Если ЦП предназначен для определенного вида сокета, то его нельзя установить в другой. Между тем, на материнской плате находится только один сокет для ЦП и он должен соответствовать типу этого процессора.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, . Первые 4 бита — код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A — поместить данные 1000 (последние 4 бита команды) в регистр A .
  2. LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 ( 0010 ) в регистр B .
  3. ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A ). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
  4. STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .

Вот такие операции нужны, чтобы сложить два числа.

Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.

У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.

Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).

Как работает процессор

Что такое процессор вроде разобрались. Но как же он работает? Это долгий и сложный процесс, но если в нем разобраться, все достаточно легко. Принцип работы центрального процессора можно рассмотреть поэтапно.

Сначала программа загружается в оперативную память, откуда черпает все необходимые сведения и набор команд обязательных к выполнению управляющий блок процессора. Затем все эти данные поступают в буферную память, так называемый КЭШ процессора.

Из буфера выходит информация, которую делят на два типа: инструкции и значения. И те и те попадают в регистры. Регистры представляют собой ячейки памяти, встроенные в чипсет. Они также бывают двух видов, в зависимости от типа информации, которую они получают: регистры команд и регистры данных.

Как работает процессор?

Одна из составных частей ЦП– это арифметико-логическое устройство. Оно занимается выполнением преобразований информации, используя арифметические и логические вычисления.

Именно сюда и попадают данные из регистров. После этого арифметико-логическое устройство считывает поступившие данные и исполняет команды, которые необходимы для обработки получившихся в итоге чисел.

Тут нас снова ждет раздвоение. Итоговые результаты делятся на законченные и незаконченные. Они идут обратно в регистры, а законченные поступают в буферную память.

КЭШ процессора состоит из двух основных уровней: верхнего и нижнего. Самые последние команды и данные отправляются в верхний кэш, а те, которые не используются, идут в нижний.

То есть, вся информация, находящаяся на третьем уровне, перебирается на второй, с которого, в свою очередь, данные идут на первый. А ненужные данные наоборот отправляются на нижний уровень.

Как работает процессор?

После того как вычислительный цикл закончится, его результаты снова записываются в оперативную память компьютера. Это происходит для того, чтобы кэш центрального процессора был освобожден и доступен для новых операций.

Но иногда случаются ситуации, когда буферная память оказывается полностью заполненной, и для новых операций нет места. В таком случае, данные, которые на данный момент не используются, идут в оперативную память или же на нижний уровень памяти процессора.

Физическая оболочка процессора

Несмотря на то, что большая часть этой статьи была посвящена сложным механизмам работы архитектуры процессора, не стоит забывать и о том, что все это должно быть создано и работать в виде реального, физического объекта.

Для того, чтобы синхронизировать работу всех компонентов процессора, используется тактовый сигнал. Современные процессоры обычно работают на частотах от 3.0 ГГц до 5.0 ГГц, и за последнее десятилетие ситуация особо не изменилась. При каждом цикле внутри чипа включаются и выключаются миллиарды транзисторов. 

Такты важны для того, чтобы обеспечить идеальную работу каждой стадии вычислительного конвейера. Количество команд, обрабатываемых процессором за каждую секунду, зависит именно от них. Частоту можно увеличить путем разгона, сделав чип быстрее, но это в свою очередь повысит энергопотребление и тепловыделение.

Как работает процессор?

Фото: Michael Dziedzic

Тепловыделение — главный враг процессоров. Когда цифровая электроника нагревается, может начаться разрушение микроскопических транзисторов. Это в свою очередь может привести к повреждению чипа, если тепло не отвести. Чтобы этого не произошло, каждый процессор оборудован термораспределителями. Сам кристалл может занимать всего 20% площади процессора, ведь увеличение площади позволяет более равномерно распределять тепло по радиатору. Кроме того, дополнительно увеличивается количество имеющихся ножек процессора (контактов), предназначенных для взаимодействия с другими компонентами компьютера.    

На современных процессорах может располагаться свыше тысячи входных и выходных контактов на задней панели. Мобильный чип может быть оснащен всего несколькими сотнями, поскольку большинство вычислительных элементов расположены уже внутри чипа. Независимо от дизайна, около половины из них предназначены для распределения питания, а остальные — для передачи данных с оперативной памяти, чипсета, накопителей, устройств PCIe и др. Высокопроизводительным процессорам, потребляющим сто и более ампер при полной нагрузке, нужны сотни ножек для равномерного распределения тока. Обычно они покрываются золотом для улучшения проводимости. Стоит отметить, что разные производители располагают ножки по-разному во всей своей многочисленной продукции.

В итоге

Если возникла необходимость покупки универсальной многоядерной модели, способной обеспечить высокую производительность как в играх, так и профильных приложениях, а может вам что-то стрельнуло собрать дома небольшой локальный сервер для стриминга или MMORPG, то можем порекомендовать Intel Сore i7 8700К или его прямого конкурента от AMD в лице Ryzen 7 1800x.

Надеюсь, что я удалил ваше любопытство и примерно обосновал, в чем особенности серверных моделей и их целесообразность.

Не стесняйтесь комментировать, подписывайтесь на обновление. В ближайшем материале расскажу, что такое тактовая частота , так что далеко не уходите.

https://youtube.com/watch?v=oyZcinq2_FA

С уважением автор Андрей Андреев