Пластический обмен: характеристика, функции, этапы

Анаболизм углеводов

Синтез углеводов состоит из нескольких этапов. Вначале из неуглеводных соединений формируются молекулы глюкозы (глюконеогенез). Затем из глюкозы синтезируется гликоген (процесс называется гликонеогенез).

Функции синтеза глюкозы в организме человека выполняют:

  • печень;
  • почки;
  • кишечный эпителий.

Исходным веществом для синтеза может служить пируват. Процесс характеризуется расходом большого количества энергии.

Процесс гликонеогенеза протекает в клетках печени и мышечной ткани. Основная часть реакций проходит в цитозоле. Синтез состоит из нескольких стадий:

Пластический обмен: характеристика, функции, этапы

  • Молекула глюкозы подвергается фосфорилированию с использованием энергии от 1 молекулы АТФ. В результат получается глюкозо-6-фосфат.
  • Фосфатная группа в новой молекуле направится с шестого атома углерода на первый. Образуется глюкозо-1-фосфат.
  • Полученное соединение переносится на УТФ — получается молекула УДФ-глюкозы.
  • УДФ-глюкоза полимеризуется и получается гликоген. В процессе участвует фермент гликогенсинтаза. При этом молекула УДФ отделяется от моносахаридной части.

Обмен белков, жиров, углеводов

Каждый день в организме происходят сложные процессы пластического и энергетического обмена. Чтобы организм смог использовать белки, жиры, углеводы, они должны пройти сложный путь. В таблице описаны процессы и функции веществ.

Виды обмена

Процессы

Значение

Белковый

Катаболизм – расщепление до аминокислот, анаболизм – синтез специализированных белков в цитоплазме клетки

Белки входят в состав ферментов, гормонов, антител. Являются основным строительным материалом организма. Конечными продуктами расщепления аминокислот являются вода, углекислый газ, аммиак

Углеводный

Катаболизм – распад гликогена (гликогенолиз), а затем глюкозы (гликолиз). Анаболизм – синтез гликогена (гликогеногенез)

Глюкоза является главным источником энергии, при избытке запасается в виде гликогена. Регулирует нормальную работу мозга. Конечные продукты расщепления – углекислый газ, вода

Жировой

Катаболизм – распад до жирных кислот и глицерина (липолиз), анаболизм – образование жирных кислот (липогенез)

Жиры являются источником энергии. Входят в состав клеточных мембран. Конечные продукты распада – углекислый газ, вода

Пластический обмен: характеристика, функции, этапы

Рис. 3. Обмен белков, жиров, углеводов.

Важную роль в метаболизме играют витамины – органические соединения, участвующие во многих химических реакциях организма. Они являются катализаторами, антиоксидантами, способствуют транспортировке веществ в клетку и образованию сигнальных молекул, реагирующих на изменение окружающей среды.

Что мы узнали?

Из темы урока узнали о ходе метаболизма, чем пластический обмен отличается от энергетического. При энергетическом обмене происходит расщепление (окисление) сложных веществ до более простых с высвобождением энергии. При пластическом обмене образовавшиеся вещества вступают в реакции с затратой энергии для образования сложных веществ, необходимых организму. Синтезируемые вещества могут запасаться в виде жиров и гликогена, а при недостатке энергии – расщепляться.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

2.9. Обмен веществ. Пластический обмен

Фотосинтез и хемосинтез

Фотосинтез

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза.

Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл. Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

Световая фаза – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

2Н+ + 4е- + НАДФ+ → НАДФ • Н;

3) фотолиз воды, происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом, свет нужен только для синтеза АТФ и НАДФ-Н.

Темновая фаза – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Пластический обмен: характеристика, функции, этапы

Суммарное уравнение фотосинтеза

Пластический обмен: характеристика, функции, этапы

В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

  • кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

  • фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

  • фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез

Хемосинтез – образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Прочитано
Отметь, если полностью прочитал текст

Синтез белка

К процессам пластического обмена относят реакции образования белков, углеводов и липидов.

Образование протеинов происходит в цитоплазме клеток. Белковая молекула — сложное полимерное образование. Её составной частью или мономером являются аминокислоты. Всего описано 20 основных аминокислот. Из них состоят белки большинства живых организмов. В отдельных случаях в процессе задействованы модифицированные аминокислоты:

  • десмозин;
  • гамма-карбоксиглутаминовая кислота;
  • селеноцистеин.

Синтез белков основан на принципе матрицы. В организме существуют особые матричные молекулы. Они несут в себе информацию о последовательности аминокислот в протеиновой цепочке. Наиболее часто такой матрицей служит молекула рибонуклеиновой кислоты — матричная или информационная РНК. С её помощью происходит определение структуры вещества.

Этапы пластического обмена белков:

Пластический обмен: характеристика, функции, этапы

Трансляция — формирование полипептидной цепочки.
Фолдинг — цепочка занимает определённое положение и структуру в трёхмерном пространстве.
Химическое преобразование молекулы.
Доставка готового полипептида к месту назначения — органу или клетке.

В процессе трансляции последовательность аминокислот в белковой цепочке выстраивается в соответствии с кодом информационной РНК. В этом участвуют рибосомы — особые клеточные структуры, состоящие из 2 частей. В каждой части рибосомы содержится белковая часть и рибонуклеотидная.

Аминокислоты доставляются к рибосомам с помощью транспортной РНК (сокращённо тРНК). На одном из участков этой молекулы имеется так называемый антикодон. Подходя к иРНК, он связывается с её участком — кодоном по принципу комплементарности. Молекула тРНК попадает в большую единицу рибосомы, и доставленная аминокислота присоединяется к строящейся белковой цепочке.

Синтез протеинов требует большого количества энергии. Она используется на следующие цели:

Для активирования трансляции.
На активацию каждой аминокислоты, участвующей в процессе.
Для связывания комплекса тРНК + аминокислота с рибосомой.
Для перемещения рибосомы после присоединения новой аминокислоты к пептидной цепи.
Для завершения процесса трансляции.

Пластический обмен

Анаболизм – это процесс при котором происходит усвоение питательных веществ, при задействовании в этом энергии. В организме человека постоянно идут химические реакции, в результате которых одни вещества расщепляются, а другие образуются. Сочетание и смена этих процессов и составляет суть пластического обмена.

Пластический материал – это белок, поэтому его молекулы в организме вынуждены постоянно обновляться. Как только одна белковая молекула разрушается, на ее место тут же встает новая, поэтому состав клетки постоянно сохраняется. Существует 20 незаменимых аминокислот, которые отвечают за синтез белка, причем 10 из них организм самостоятельно продуцировать не может, и человек их получает с пищей.

Анаболический эффект

Теперь, когда более или менее понятно, что такое анаболизм, катаболизм и в целом обмен веществ, можно двигаться дальше и разбираться что из себя представляет анаболический эффект.

По своей сути — это процесс набора человеком мышечной или жировой ткани. При этом, как уже понятно из выше сказанного, простые вещества синтезируются в сложные. В качестве регулятора анаболизма и катаболизма выступают гормоны, и чтобы баланс сместился в сторону анаболизма необходим инсулин и тестостерон.

Пластический обмен

Пластический обмен: характеристика, функции, этапы

  • Фотосинтез, который свойственен растениям, а также некоторым бактериям. Они называются автотрофами, поскольку способны самостоятельно синтезировать необходимые для жизни органические вещества из неорганических соединений.
  • Хемосинтез протекает у бактерий, называемых хемотрофами. И они также могут обеспечивать себя необходимыми органическими соединениями. Для их жизнедеятельности не нужен кислород, они используют диоксид углерода.
  • Биосинтез белков осуществляется в живых организмах. К ним относятся и гетеротрофы, которые, в отличие от двух предыдущих упоминаемых форм, неспособны самостоятельно обеспечивать себя органическими веществами, а поэтому получают их с помощью других организмов.

Остановимся на этих процессах более подробно.

Фотосинтез

Пластический обмен: характеристика, функции, этапы

Процесс, без которого не была бы возможна жизнь на Земле. Многим формам жизни для дыхания нужен кислород взамен выдыхаемого ими в воздух углекислого газа. Этим важным веществом нас обеспечивают растения, в зелёных листьях которых содержатся хлоропласты. Их окружает пара мембран, поскольку внутри хлоропласта в цитоплазме содержатся ценные граны с собственными защитными оболочками. В этих стопках тилакоидов, в свою очередь, присутствует хлорофилл, отвечающий за цвет растения, но главное — делающий процесс фотосинтеза возможным.

Осуществляется он посредством соединения шести молекул углекислого газа с водой, в результате чего образуется глюкоза. Побочным продуктом реакции является жизненно необходимый кислород. Процесс возможен только на свету, при использовании солнечной энергии.

Хемосинтез

Хемосинтез протекает у микроорганизмов, также способных к самостоятельному преобразованию неорганических соединений в органические. К ним относятся:

  • железобактерии (окисляют соли железа);
  • водородные (молекулы водорода);
  • серные (сернистый водород);
  • нитрифицирующие (аммиак из гниющих остатков растений);
  • тионовые (молекулы серы, а также её соединения в виде солей).

Окисление углекислого газа происходит без участия кислорода, с использованием запасённой ранее энергии. Из диоксида углерода синтезируются органические вещества, необходимые для жизнедеятельности.

Биосинтез белков

Сложный процесс, направленный на разложение попадающих в организм белков на составляющие, из которых впоследствии синтезируются собственные уникальные белки. Состоит из двух стадий.

Транскрипция — процесс, состоящий из трёх этапов (образование транскрипта, процессинг, сплайсинг), которые происходят в ядре клетки. Они направлены на создание информационной РНК (иРНК) из ДНК. В результате новый полимер полностью копирует небольшой участок нити ДНК с той разницей, что тимину в нём эквивалентен урацил.

Трансляция — перенос информации с синтезированной на предыдущем этапе молекулы РНК на строящийся полипептид с указаниями о его будущей структуре. Процесс происходит на рибосомах, расположенных в цитоплазме клетки. Они имеют овальную форму и состоят из частей, которые могут соединяться только при наличии иРНК. Сам перенос информации осуществляется в несколько этапов.

  1. Под действием ферментов и при участии АТФ аминокислоты проходят активацию с образованием аминоациладенилата.
  2. Аминоксилота связывается с транспортной РНК (тРНК) с выделением аденозинмонофосфата (АМФ).
  3. Образованный на предыдущем этапе комплекс объединяется с рибосомой.
  4. Аминокислоты подставляются в структуры пептида и освобождают тРНК.

Итак, все вещества, поступающие в живой организм, распределяются в нём так, чтобы приносить ему пользу. Сложные распадаются с выделением энергии, необходимой для дальнейшей жизнедеятельности (например, выполнение физической или умственной работы человеком), запасаемой в АТФ. А из простых веществ организм синтезирует новые соединения с использованием энергии, накопившейся в универсальном источнике — молекуле той самой АТФ. При этом энергия не расходуется безвозвратно — она запасается в новых соединениях.

Диссимиляция и ассимиляция в корне отличаются друг от друга, но при этом они неразрывно связаны. Ведь именно катаболизм даёт энергию, без которой невозможен анаболизм, то есть синтез необходимых организму веществ. Вот почему эти два процесса являются очень важными.

Нарушение обменных процессов

Если энергетический и пластический обмен происходит неправильно, то метаболизм нарушается полностью. Как правило, эти изменения происходят при патологиях, и становятся главными причинами различных проблем в организме.

Пластический обмен: характеристика, функции, этапы

Нарушение обменных процессов могут произойти абсолютно в любом возрасте, но большую опасность дисбаланс обмена веществ представляет для детей, потому что их органы еще продолжают развиваться. В детском возрасте у детей с нарушенным метаболизмом развивается рахит, анемия, гипогликемия.

Факторы, которые могут вызвать нарушения в пластическом или энергетическом обмене могут быть следующими:

  • наследственная предрасположенность;
  • неправильный образ жизни;
  • неблагоприятная экологическая обстановка в регионе проживания.

Кроме того, разбалансировать метаболические процессы могут:

  • заболевания гипофиза, проблемы с щитовидной железой и надпочечниками;
  • отсутствие режима питания.

Есть некоторые внешние признаки, которые наблюдаются при сбое в обменных процессах:

  • недобор веса или его излишек;
  • отеки и постоянная усталость;
  • различные кожные высыпания, а также бледность кожи, ее шелушение;
  • ломкость ногтей и волос.

Нормальный метаболизм – это очень важная составляющая здоровья человека, если организм не синтезирует энергию и необходимые для правильной работы вещества, то развивается целый комплекс заболеваний, которые связаны либо с отложением жиров, либо с недостаточным питанием клеток. В последнем случае организм добирает нужные вещества из своих резервов, а когда они иссекают, то может начаться разрушение мышечной массы и даже некоторых органов.

Как восстановить нарушенный обмен? Очень важно пересмотреть свой рацион питания, понятно, что пища должна быть не только питательной, но и полезной. Многие продукты помогают сбалансировать обменные процессы или хотя бы оказать на них положительное воздействие

В большинстве своем это продуты растительного происхождения:

  • овощи, которые содержат грубую клетчатку – свекла, капуста, сельдерей;
  • очень хорошо ускоряют метаболические процессы лимон, имбирь, зеленый чай;
  • куриное филе, мясо молодого теленка и прочие сорта постного мяса;
  • рыба;
  • зелень;
  • цитрусовые.

Заботиться о метаболизме безусловно надо, ведь правильный метаболизм – это не только красивое тело, чистая кожа и здоровые волосы, это здоровье человека в целом.

Гормоны

Урок биологии №31. Биосинтез белка.

ДЕНИС ПОЯСНИТ: МЕТАН.

Метаболизм. ЭНЕРГЕТИЧЕСКИЙ ОБМЕН. Для чего мы дышим?

Анаболизм, катаболизм, метаболизм. Обучающее видео

ЕГЭ по биологии. Энергетический обмен

Как повысить тестостерон. Часть 1. Нормы теста и симптомы при снижении.

Катаболизм

Мышцы БЕЗ АНАБОЛИЗМА и ГМО-дряни:)

Гормоны

Урок биологии №31. Биосинтез белка.

ДЕНИС ПОЯСНИТ: МЕТАН.

Метаболизм. ЭНЕРГЕТИЧЕСКИЙ ОБМЕН. Для чего мы дышим?

Анаболизм, катаболизм, метаболизм. Обучающее видео

ЕГЭ по биологии. Энергетический обмен

Как повысить тестостерон. Часть 1. Нормы теста и симптомы при снижении.

Катаболизм

Мышцы БЕЗ АНАБОЛИЗМА и ГМО-дряни:)

«Обмен веществ и превращения энергии. Ферменты»

Раздел ЕГЭ: 2.5.  Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций. Обмен веществ — совокупность химических превращений, направленных на сохранение и самовоспроизведение биологических систем. Он включает в себя:

  • поступление веществ в организм в процессе питания и дыхания,
  • внутриклеточный обмен веществ, или метаболизм,
  • выделение конечных продуктов обмена.

Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластического и энергетического обменов.

Пластический обмен: характеристика, функции, этапы

Энергетический обмен и пластический обмен

Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примерами реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.

Энергетический обмен (катаболизм, диссимиляция) — это совокупность реакций расщепления сложных веществ до более простых. В результате энергетического обмена выделяется энергия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластического обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в процессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.

Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания.

Ферменты

Протекание химических реакций в живых организмах обеспечивается благодаря биологическим катализаторам белковой природы — ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а иногда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечного продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая — кофактор (кофермент). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.

Ферменты отличаются от катализаторов небелковой природы высокой специфичностью действия, а также возможностью регуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существенно отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура 37° С, а давление должно быть близким к атмосферному.

Механизм действия ферментов заключается в снижении энергии активации веществ (субстратов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных комплексов.

  • Стадии энергетического обмена. Брожение и дыхание.
  • Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Энергетический обмен

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

Подготовительный этап

Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла. Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

Бескислородный этап (анаэробный) — гликолиз

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Кислородный этап (аэробный)

Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ. Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап). Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

Атф — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания — аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.