Все тайны таблицы менделеева в одной статье!

Динамика

Всё завязано на радиусе атома. Помня об этом, вы всегда можете показать изменение электроотрицательности, окислительно-восстановительных, металлических/неметаллических свойств.

Посмотрите внимательно на распределение электронов по слоям у первых четырёх элементов первой группы и первых четырёх элементов седьмой группы.

Так уж мир устроен — всё стремится к стабильности

Люди ли это, государства, какие-то химические частицы — неважно. Среди химических элементов своеобразным образцом стабильности являются так называемые «благородные газы» — элементы главной подгруппы восьмой группы

Все остальные химические элементы стремятся этому образцу соответствовать, поэтому химические свойства веществ обусловлены…

Очевидно, что натрию легче отдать один электрон, чтобы достигнуть конфигурации неона, чем присоединить семь электронов и стать «вторым аргоном» — у него и свободных орбиталей-то для этого нет!

Ещё легче с этим решением калию — мало того, что ему так же выгоднее затратить меньшее количество энергии, отдав один электрон вместо присоединения нескольких, так у него ещё и сам валентный электрон далеко — радиус больше, из-за этого его труднее удерживать.

Обратную картину наблюдаем в седьмой группе. Картина, впрочем, объясняется теми же самыми общими закономерностями.

Есть фтор. Ему «впадлу» отдавать семь электронов, когда можно отнять у кого-нибудь один и начать косплеить неон. А есть йод, йоду тоже впадлу — но у него радиус больше, поэтому ему сложнее присоединять присоединить этот несчастный электрон.

Исходя из этих примеров, мы можем вывести некоторые закономерности изменения химических свойств при движении по группам и периодам:

1. Окислительно-восстановительныесвойства — собственно, способность присоединять/отдавать электроны, изменяя степень окисления.

Сверху-вниз по группе — возрастают восстановительные (вспомните натрий и калий), уменьшаются окислительные, слева-направо по периоду — уменьшаются восстановительные (вспомните элементы первой группы и элементы седьмой), увеличиваются окислительные.

2. Металлические/неметаллические свойства — то же самое, что и в первом свойстве — отдача/принятие электронов, следовательно — закономерности будут аналогичны.

3. Электроотрицательность — способность присоединять электронные пары при образовании химической связи. Снова присоединение/отдача электронов => аналогично первым двум свойствам.

А вот со следующими двумя свойствами рекомендую быть максимально осторожным.

4. Кислотно-основные свойства ОКСИДОВ И ГИДРОКСИДОВ — в группе (сверху вниз) увеличиваются основные свойства, уменьшаются кислотные, по периоду (слева направо) — наоборот, кислотные увеличиваются, а основные — уменьшаются.

5. А однажды моему знакомому встретилось такое задание:

«Тематический тренинг» В. Н. Доронькина

Как вы видите, под цифрой 2 просят указать элементы в порядке возрастания кислотных свойств водородных соединений. Которые он, очевидно, принял за кислотные свойства оксидов и гидроксидов, поэтому там написан неправильный ответ и недоумевающий знак вопроса.

С кислотными свойствами водородных соединений всё с точностью до наоборот… Хотя, нет, ладно, не всё. Наполовину.

Давайте просто вспомним, что вообще такое кислотные свойства. Если очень коротко и упрощённо:

А какая разница, протон, электрон — ведь всё опять возвращается на круги своя, к атомному радиусу!

Чем больше он, тем больше длина связи. Чем больше длина связи, тем легче отдавать те или иные частицы. Значит, по группе (сверху вниз) кислотные свойства водородных соединений УСИЛИВАЮТСЯ. Это, кстати, объясняет, почему плавиковую кислоту (HF) считают слабее, чем её соседей с нижних этажей — HCl, HBr, HI.

Пятое свойство упоминается не так часто, как четвёртое, но оно имеет место быть в том числе и в заданиях ЕГЭ. Будьте внимательны.

На сегодня всё, не забудьте определить ЧИСЛО НЕЙТРОНОВ ХЛОРА, в следующей статье мы рассмотрим детальнее этот вопрос (а заодно обсудим изотопы, атомную массу и многие другие интересные вещи) и проверим, правы ли вы в своих рассуждениях, поэтому не забудьте поставить лайк и подписаться на канал!

Крайне занятная таблица. Но если вы школьник, то учить её не стоит, одолейте хотя бы классику 🙂

Лантаноиды и актиноиды.

Последовательное заполнение электронами 6s-, 4f-, 5d- и 6p-орбиталей у элементов 6-го (т.е. третьего длинного) периода приводит к появлению новых 32 электронов, которые формируют структуру последнего элемента этого периода – радона. Начиная с 57 элемента, лантана, последовательно располагаются 14 элементов, мало отличающихся по химическим свойствам. Они образуют серию лантаноидов, или редкоземельных элементов, у которых застраивается 4f-оболочка, содержащая 14 электронов.

Серия актиноидов, которая располагается за актинием (атомный номер 89), характеризуется застройкой 5f-оболочки; она также включает 14 элементов, весьма близких по химическим свойствам. Элемент с атомным номером 104 (резерфордий), следующий за последним из актиноидов, уже отличается по химическим свойствам: он является аналогом гафния. Для элементов за резерфордием приняты названия: 105 – дубний (Db), 106 – сиборгий (Sg), 107 – борий (Bh), 108 – хассий (Hs), 109 – мейтнерий (Mt).

Электронные конфигурации.

В следующей таблице приведены возможные количества электронов для различных энергетических состояний. Главное квантовое число n = 1, 2, 3,… характеризует энергетический уровень электронов (1-й уровень располагается ближе к ядру). Орбитальное квантовое число l = 0, 1, 2,…, n – 1 характеризует орбитальный момент импульса. Орбитальное квантовое число всегда меньше главного квантового числа, а максимальное его значение равно главному минус 1. Каждому значению l отвечает определенный тип орбитали – s, p, d, f … (это обозначение происходит от спектроскопической номенклатуры 18 в., когда различные серии наблюдаемых спектральных линий назывались sharp, principal, diffuse и fundamental).

Таблица 3. Число электронов в различных энергетических состояниях атома
Таблица 3. ЧИСЛО ЭЛЕКТРОНОВ В РАЗЛИЧНЫХ ЭНЕРГЕТИЧЕСКИХ СОСТОЯНИЯХ АТОМА
Главное квантовое число Орбитальное квантовое число Количество электронов на оболочке Обозначение энергетического состояния (тип орбитали)
1 2 1s
2 2 2s
  1 6 2p
3 2 3s
  1 6 3p
  2 10 3d
4 2 4s
  1 6 4p
  2 10 4d
  3 14 4f
5 2 5s
  1 6 5p
  2 10 5d
  5 14 5f
  4 18 5g
6 2 6s
  1 6 6p
  2 10 6d
7 2 7s

Группы и подгруппы.

При расположении периодов друг под другом элементы располагаются в колонки, образуя группы, нумеруемые цифрами 0, I, II,…, VIII. Предполагается, что элементы внутри каждой группы проявляют сходные общие химические свойства. Еще бóльшее сходство наблюдается у элементов в подгруппах (A и B), которые образуются из элементов всех групп, кроме 0 и VIII. Подгруппа А называется главной, а В – побочной. Некоторые семейства имеют названия, например, щелочные металлы (группа IA), щелочноземельные металлы (группа IIA), галогены (группа VIIA) и благородные газы (группа 0). В группе VIII находятся переходные металлы: Fe, Co и Ni; Ru, Rh и Pd; Os, Ir и Pt. Находящиеся в середине длинных периодов, эти элементы более сходны друг с другом, чем с элементами, стоящими до и после них. В нескольких случаях порядок увеличения атомных весов (точнее, атомных масс) нарушается, например, в пáрах теллур и иод, аргон и калий. Это «нарушение» необходимо для сохранения сходства элементов в подгруппах.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Разделы химии

Современная химия — настолько обширная область естествознания, что многие её разделы по существу представляют собой самостоятельные, хотя и тесно взаимосвязанные научные дисциплины.

По признаку изучаемых объектов (веществ) химию принято делить на неорганическую и органическую. Объяснением сущности химических явлений и установлением их общих закономерностей на основе физических принципов и экспериментальных данных занимается физическая химия, включающая квантовую химию, электрохимию, химическую термодинамику, химическую кинетику. Самостоятельными разделами являются также аналитическая и коллоидная химия (см. ниже перечень разделов).

Технологические основы современных производств излагает химическая технология — наука об экономичных методах и средствах промышленной химической переработки готовых природных материалов и искусственного получения химических продуктов, не встречающихся в окружающей природе.

Сочетание химии с другими смежными естественными науками представляют собой биохимия, биоорганическая химия, геохимия, радиационная химия, фотохимия и др.

Общенаучные основы химических методов разрабатываются в теории познания и методологии науки.

  • Агрохимия
  • Аналитическая химия занимается изучением веществ с целью получить представление об их химическом составе и структуре, в рамках этой дисциплины ведётся разработка экспериментальных методов химического анализа.
  • Биоорганическая химия
  • Биохимия изучает химические вещества, их превращения и явления, сопровождающие эти превращения в живых организмах. Тесно связана с органической химией, химией лекарственных средств, нейрохимией, молекулярной биологией и генетикой.
  • Вычислительная химия
  • Геохимия — наука о химическом составе Земли и планет (космохимия), законах распределения элементов и изотопов, процессах формирования горных пород, почв и природных вод.
  • Квантовая химия
  • Коллоидная химия
  • Компьютерная химия
  • Косметическая химия
  • Космохимия
  • Математическая химия
  • Материаловедение
  • Медицинская химия
  • Металлоорганическая химия
  • Нанохимия
  • Неорганическая химия изучает свойства и реакции неорганических соединений. Чёткой границы между органической и неорганической химии нет, напротив, существуют дисциплины на стыке этих наук, например, металлоорганическая химия.
  • Органическая химия выделяет в качестве предмета изучения вещества, построенные на основе углеродного скелета.
  • Нейрохимия своим предметом имеет изучение медиаторов, пептидов, белков, жиров, сахара и нуклеиновых кислот, их взаимодействия и роли, которую они играют в формировании, становлении и изменении нервной системы.
  • Нефтехимия
  • Общая химия
  • Препаративная химия
  • Радиохимия
  • Супрамолекулярная химия
  • Фармацевтика
  • Физическая химия изучает физический и фундаментальный базис химических систем и процессов. Важнейшие области исследования включают химическую термодинамику, кинетику, электрохимию, статистическую механику и спектроскопию. Физическая химия имеет много общего с молекулярной физикой. Физическая химия предполагает использование инфинитезимального метода. Физическая химия является отдельной дисциплиной от химической физики.
  • Фотохимия
  • Химия высокомолекулярных соединений
  • Химия одноуглеродных молекул
  • Химия полимеров
  • Химия почв
  • Теоретическая химия своей задачей ставит теоретическое обобщение и обоснование знаний химии через фундаментальные теоретические рассуждения (как правило, в области математики или физики).
  • Термохимия
  • Токсикологическая химия
  • Электрохимия
  • Экологическая химия; химия окружающей среды
  • Ядерная химия изучает ядерные реакции и химические последствия ядерных реакций.

Короткие и длинные периоды.

Низшая полностью завершенная электронная оболочка (орбиталь) обозначается 1s и реализуется у гелия. Следующие уровни – 2s и 2p – соответствуют застройке оболочек атомов элементов 2-го периода и при полной застройке, у неона, содержат в сумме 8 электронов. С увеличением значений главного квантового числа энергетическое состояние низшего орбитального числа для большего главного может оказаться ниже энергетического состояния наиболее высокого орбитального квантового числа, соответствующего меньшему главному. Так, энергетическое состояние 3d выше, чем 4s, поэтому у элементов 3-го периода происходит застройка 3s- и 3p-орбиталей, заканчиваясь формированием устойчивой структуры благородного газа аргона. Далее происходит последовательная застройка 4s-, 3d- и 4p-орбиталей у элементов 4-го периода, вплоть до завершения внешней устойчивой электронной оболочки из 18 электронов у криптона. Это и приводит к появлению первого длинного периода. Аналогично происходит застройка 5s-, 4d- и 5p-орбиталей атомов элементов 5-го (т.е. второго длинного) периода, завершаясь электронной структурой ксенона.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Эволюция периодической системы химических элементов

Особым и важным для эволюции периодической системы химических элементов оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов (U, In, Ce и его аналогов), в чём состояло первое практическое применение П. с. э., а также впервые предсказал существование и основные свойства нескольких неизвестных элементов, которым соответствовали незаполненные клетки П. с. э. Классическим примером является предсказание «экаалюминия» (будущего Ga, открытого П. Лекоком де Буабодраном в 1875), «экабора» (Sc, открытого шведским учёным Л. Нильсоном в 1879) и «экасилиция» (Ge, открытого немецким учёным К. Винклером в 1886). Кроме того, Менделеев предсказал существование аналогов марганца (будущие Тс и Re), теллура (Po), иода (At), цезия (Fr), бария (Ra), тантала (Pa).

Во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов.

Периоды.

В этой таблице Менделеев расположил элементы в горизонтальных рядах – периодах. Таблица начинается с очень короткого периода, содержащего только водород и гелий. Следующие два коротких периода содержат по 8 элементов. Затем располагаются четыре длинных периода. Все периоды, кроме первого, начинаются со щелочного металла (Li, Na, K, Rb, Cs), и все периоды заканчиваются благородным газом. В 6-м периоде находится серия из 14 элементов – лантаноиды, которой формально нет места в таблице и ее обычно располагают под таблицей. Другая аналогичная серия – актиноиды – находится в 7-м периоде. Эта серия включает элементы, полученные в лаборатории, например бомбардировкой урана субатомными частицами, и также размещается под таблицей ниже лантаноидов.

Периодическая таблица.

Менделеев расположил элементы в порядке увеличения их атомного веса и в 1869 предложил таблицу размещения семейств элементов (табл. 1). Модифицированная форма таблицы (табл. 2), в которой семейства (группы) элементов расположены в колонках, была предложена им в 1871 и существует до настоящего времени. Наряду с ней получила распространение развернутая форма таблицы. См. также ХИМИЯ; ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.

Таблица 1. Периодическая таблица элементов, опубликованная Менделеевым в 1869
Таблица 1. ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ, ОПУБЛИКОВАННАЯ МЕНДЕЛЕЕВЫМ В 1869 (первая версия)
      Ti = 50 Zr = 90 ? = 180
      V = 51 Nb = 94 Ta = 182
      Cr = 52 Mo = 96 W = 186
      Mn = 55 Rh = 104,4 Pt = 197,4
      Fe = 56 Ru = 104,4 Ir = 198
    Ni = Co = 59 Pd = 106,6 Os = 199
H = 1     Cu = 63,4 Ag = 108 Hg = 200
  Be = 9,4 Mg = 24 Zn = 65,2 Cd = 112  
  B = 11 Al = 27,4 ? = 68 Ur = 116 Au = 197?
  C = 12 Si = 28 ? = 70 Sn = 118  
  N = 14 P = 31 As = 75 Sb = 122 Bi = 210?
  O = 16 S = 32 Se = 79,4 Te = 128?  
  F = 19 Cl = 35,5 Br = 80 I = 127  
Li = 7 Na = 23 K = 39 Rb = 85,4 Cs = 133 Tl = 204
    Ca = 40 Sr = 87,6 Ba = 137 Pb = 207
    ? = 45 Ce = 92    
    ?Er = 56 La = 94    
    ?Yt = 60 Di = 95    
    ?In = 75,6 Th = 118    
Таблица 2. Модифицированная Таблица Менделеева
Таблица 2. МОДИФИЦИРОВАННАЯ ТАБЛИЦА МЕНДЕЛЕЕВА
Группа I II III IV V VI VII   VIII  
Формула оксида или гидрида Подгруппа R2O

А В

RO

А В

R2O3

В А

RH4 RO2

В А

RH3 R2O5

В А

RH2 RO3

В А

RH R2O7

В А

       
Период 1 1 H Водород 1,0079                   2 He Гелий 4,0026
Период 2 3 Li Литий 6,941 4 Be Бериллий 9,0122 5 B Бор 10,81 6 C Углерод 12,011 7 N Азот 14,0067 8 O Кислород 15,9994 9 F Фтор 18,9984       10 Ne Неон 20,179
Период 3 11 Na Натрий 22,9898 12 Mg Магний 24,305 13 Al Алюминий 26,9815 14 Si Кремний 28,0855 15 P Фосфор 30,9738 16 S Сера 32,06 17 Cl Хлор 35,453       18 Ar Аргон 39,948
Период 4 19 K Калий 39,0983 29 Cu Медь 63,546 20 Ca Кальций 40,08 30 Zn Цинк 65,39 21 Sc Скандий 44,9559 31 Ga Галлий 69,72 22 Ti Титан 47,88 32 Ge Германий 72,59 23 V Ванадий 50,9415 33 As Мышьяк 74,9216 24 Cr Хром 51,996 34 Se Селен 78,96 25 Mn Марганец 54,9380 35 Br Бром 79,904 26 Fe Железо 55,847 27 Co Кобальт 58,9332 28 Ni Никель 58,69

36 Kr Криптон 83,80

Период 5 37 Rb Рубидий 85,4678 47 Ag Серебро 107,868 38 Sr Стронций 87,62 48 Cd Кадмий 112,41 39 Y Иттрий 88,9059 49 In Индий 114,82 40 Zr Цирконий 91,22 50 Sn Олово 118,69 41 Nb Ниобий 92,9064 51 Sb Сурьма 121,75 42 Mo Молибден 95,94 52 Te Теллур 127,60 43 Tc Технеций 53 I Иод 126,9044 44 Ru Рутений 101,07 45 Rh Родий 102,9055 46 Pd Палладий 106,4

54 Xe Ксенон 131,29

Период 6 55 Cs Цезий 132,9054 79 Au Золото 196,9665 56 Ba Барий 137,33 80 Hg Ртуть 200,59 57* La Лантан 138,9055 81 Tl Таллий 204,38 72 Hf Гафний 178,49 82 Pb Свинец 207,21 73 Ta Тантал 180,9479 83 Bi Висмут 208,9804 74 W Вольфрам 183,85 84 Po Полоний 75 Re Рений 186,207 85 At Астат 76 Os Осмий 190,2 77 Ir Иридий 192,2 78 Pt Платина 195,08

86 Rn Радон

Период 7 87 Fr Франций 88 Ra Радий 226,0254 89** Ac Актиний 227,028 104 105 106 107 108 109  
* 58 Ce 140,12 59 Pr 140,9077 60 Nd 144,24 61 Pm 62 Sm 150,36 63 Eu 151,96 64 Gd 157,25 65 Tb 158,9254 66 Dy 162,50 67 Ho 164,9304 68 Er 167,26 69 Tm 168,9342 70 Yb 173,04 71 Lu 174,967
** 90 Th 232,0381 91 Pa 231,0359 92 U 238,0289 93 Np 237,0482 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lr
*Лантаноиды: церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. **Актиноиды: торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий, лоуренсий.Примечание. Атомный номер указан над символом элемента, атомная масса указана под символом элемента. Величина в скобках – массовое число наиболее долгоживущего изотопа.

Литература

  • Некрасов Б. В. Основы общей химии, т. 1. — М.: «Химия», 1973
  • Химическая энциклопедия, п. ред. Кнунянц И. Л., т. 5. — М.: «Советская энциклопедия», 1988
  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. — М.: Химия, 1989
  • Джон Мур. Химия для чайников = Chemistry For Dummies. — М.: «Диалектика», 2011. — 320 с. — ISBN 978-5-8459-1773-7.
  • Н. Л. Глинка. Общая химия. — М.: Интеграл-Пресс, 2008. — С. 728. — ISBN 5-89602-017-1.
  • Джуа М. История химии. — М.: Мир, 1966. — 452 с.
  • Дубинская А. М., Призмент Э. Л. Химические энциклопедии, в кн.: Химический энциклопедический словарь. — М., 1983
  • Потапов В. М., Кочетова Э. К. Химическая информация. Где и как искать химику нужные сведения. — М., 1988
  • Аблесимов Н. Е. Сколько на свете химий? // Химия и жизнь — XXI век. 2009. № 5. С. 49-52; № 6. С. 34-37.
  • Ахметов, Н. С. Общая и неорганическая химия. Общая неорганическая химия. Учеб. для вузов.-4-е изд., испр.,-М,: Высш. шк., Изд. центр» Академия», 2001.-743 с., ил., 2001.
  • Мелентьева, Галина Александровна. Фармацевтическая химия. Рипол Классик, 1985.

Положения

Как шахматная доска состоит из строк, столбцов и полей, так и таблица состоит из периодов, групп (которые, в свою очередь, делятся на главные и побочныеподгруппы) и фиксированных номеров химических элементов.

Период — это строки, горизонтальные ряды.

Группы — столбцы, ряды вертикальные.

Как определить, где главная подгруппа, а где побочная? Посмотрите на второй и третий период — там элементы только главных подгрупп. Они находятся с одного «бока» ячейки. Если опуститься на периоды ниже, можно заметить, что некоторые элементы смещены в другую сторону ячеек (Cu, Ag, Au, Rg в первой группе, например). Вот это и есть побочная подгруппа.

И, наконец, есть определённая нумерация этих самых ячеек, в которых находятся элементы — их порядковые номера.

Давайте потренируемся и составим «паспортные данные» хрома. Будет лучше, если вы сначала попробуете сами, а потом посмотрите ответ.

Все тайны таблицы менделеева в одной статье!

https://himi4ka.ru/

Легко и ненавязчиво находим, что хром находится в четвёртом периоде и шестой группе. Находится чуть в стороне от кислорода и серы — следовательно, подгруппа побочная. Ну и, не без некоторых усилий (спасибо, Дзен, за качество и невозможность приближать изображение) обнаруживаем его под двадцать четвёртым номером.

Ответ: четвёртый период, шестая группа, побочная подгруппа, двадцать четвёртый номер.

Всё очень просто!

Свойства

Каждому положению элемента относительно той или иной части таблицы соответствует определённое свойство.

Сопоставим их:

1. Период, в котором находится элемент — показывает число электронных слоёв элемента.

2. Группа — показывает наибольшее число электронов, которые атом может отдавать для образования хим. связи (максимальная валентность). Также показывает максимальную положительную степень окисления.

3. По тому, находится элемент в побочной или главной подгруппе, можно определить, металл это или неметалл.

Зачем это нужно, если в учебниках они всегда есть на красиво разукрашенном форзаце?

Всё это, конечно, замечательно, но что будет, если вам попадётся вариант в ч/б?

Кстати, именно такую таблицу раздают на ЕГЭ по химии. И некоторые ребята впадают в ступор уже на втором задании, когда их просят определить, относится элемент к металлам или неметаллам.

Чтобы не потерять лёгкие баллы, запомните:

Ну и, наконец, есть порядковый номер. Зная его, мы можем определить заряд ядра, число протонов, число электронов и, соответственно, найти число нейтронов через относительную атомную массу и протоны.

Вернёмся к нашему хрому. Как мы помним, он находится в четвёртом периоде, шестой группе, побочной подгруппе и имеет 24-ый номер.

Переводя на свойства: имеет четыре электронных слоя; имеет максимальную валентность VI и степень окисления +6; металл; его заряд/число протонов/число электронов равно 24, а число нейтронов — 28(52 — 24 = 28).

Очень коварен в плане расчёта нейтронов хлор. Попробуйте сами найти нужное их количество, а в следующей статье узнаете, правы ли вы — поэтому не забудьте подписаться на канал, чтобы ничего не пропустить!

Ну а мы переходим к изменению свойств по периодам и группам.

Валентность.

Наиболее общее определение валентности элемента – это способность его атомов соединяться с другими атомами в определенных соотношениях. Иногда валентность элемента заменяют близким ему понятием степени окисления (с.о.). Степень окисления соответствует заряду, который приобрел бы атом, если бы все электронные пары его химических связей сместились в сторону более электроотрицательных атомов. В любом периоде слева направо происходит увеличение положительной степени окисления элементов. Элементы I группы имеют с.о., равную +1 и формулу оксида R2O, элементы II группы – соответственно +2 и RO и т.д. Элементы с отрицательной с.о. находятся в V, VI и VII группах; считается, что углерод и кремний, находящиеся в IV группе, не имеют отрицательной степени окисления. Галогены, имеющие степень окисления –1, образуют соединения с водородом состава RH. В целом положительная степень окисления элементов соответствует номеру группы, а отрицательная равна разности восемь минус номер группы. Из таблицы нельзя определить наличие или отсутствие других степеней окисления.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий