Опыление

Способы привлечения опылителей

Выше отмечено, что четыре растения из пяти используют для опыления животных – от млекопитающих до насекомых. Разумеется, при этом они выработали соответствующий механизм для их приманивания.

Самый распространенный – наличие сладкого нектара. Много миллионов лет назад, стремясь приманить к себе опылителей, некоторые растения приобрели клетки, способные выделять сладкое вещество. Опыт оказался удачным, и в результате у него появились многие тысячи потомков, вырабатывавших нектар с резким запахом. Такие растения, в первую очередь, ориентируются на животных и насекомых, обладающих тонким обонянием.

Опыление

Но ведь есть и растения, использующие орнитофилию. А птицы, как известно, почти лишены обоняния. Здесь был использован иной прием – более крупные и яркие цветы, которые почти не пахнут. Они прекрасно приманивают колибри, которые знают, что внутри их ждет сладкий нектар.

Опыление

Опыление — процесс переноса пыльцы с тычинок на рыльце пестика. Пыльца не может сама активно перемещаться, следовательно, растения зависят от внешних факторов.

Опыление

Существует несколько способов опыления:

  • Искусственное опыление. Как следует из названия, человек сам переносит пыльцу с тычинок на пестики цветков. Такое опыление, как правило, применяется, для выведения новых сортов растений.
  • Самоопыление. При самоопылении происходит перенос пыльцы с тычинок на рыльце пестика того же самого цветка. Такое опыление может проходить лишь в обоеполых цветках и еще обычно происходит в бутонах, т.е. к моменту, когда цветок раскроется, его рыльце уже опылено своей пыльцой.
  • Перекрестное опыление. При перекрестном опылении пыльца с тычинок одного цветка попадает на рыльце пестика другого цветка. 90% растений имеют именно такой способ опыления. При таком опылении происходит обмен генами, поддерживается высокий уровень гетерозиготности популяций, определяется единство и целостность вида. Кроме того, благодаря такому опылению создаются предпосылки для естественного отбора.

Виды опыления

При перекрестном опылении рождается более выносливое потомство. Это происходит потому, что растения, получая отцовские и материнские признаки, становятся более стойкими и жизнеспособными.

У растений в процессе эволюции выработались различные способы для предотвращения самоопыления. В первую очередь — это однополовость цветка, при которой становится возможным только перекрестное опыление. К таким растениям относятся осина, орешник, конопля и т.п.
Если у растения встречаются обоеполые цветки, пыльца и рыльце пестика могут созревать разновременно. Это также исключает процесс самоопыления. К таким растениям относятся большинство сложноцветных.
Часто встречается еще такое явление, как самонесовместимость. При этом при самоопылении пыльца не прорастает на рыльце собственного цветка (первоцвет).
Однако если по каким-то причинам перекрестного опыления не произошло, самоопыление часто будет служить резервным способом опыления.

Опыление

В качестве опылителей растений могут служить не только всевозможные насекомые (пчелы, шмели, осы, жуки, мухи, бабочки), но и некоторые позвоночные (птицы, некоторые виды грызунов, летучие мыши). В течение миллионов лет растения сформировали ассоциации с животными, чтобы их опыление было гарантировано.

Опыление

Опыление

Опыление

Опыление

Для облегчения процесса опыления, растения всячески привлекают внимание опылителей. Это может быть пища и соответствующие притягательные аттрактанты, которые воздействуют на зрение (форма и цвет); подают сигналы различными ароматами; соблазняют источниками питания в виде нектара, воска или самой пыльцы; дают лекарства, а иногда и наркотики, которые изменяют поведение животного; создают структуры, имитирующие поведение спаривания; выдают продукты, которые могут использоваться опылителем в качестве феромонов и т.п

Аттрактанты

Растения заботятся и о сохранности семязачатков, и защиты пыльцы и нектара от грабителей. Их выдают лишь в форме вознаграждения и только за фактический труд по опылению. Это действительно награда, т.к., например, в нектаре содержится до 75% сахара, аминокислоты, липиды и минеральные вещества. А пыльца состоит из 30% белка, 7% крахмала, 10% сахара, 9% минеральных веществ, витаминов; высококалорийных масел и воска.

Растения, которые опыляются ветром, имеют невзрачные и лишенные запаха цветки. Их околоцветник развит плохо или совсем отсутствует. Пыльца образуется в больших количествах. Пыльца мелкая, чтобы ветер легко переносил ее на большие расстояния, для обеспечения высокой выживаемости вида. Как правило, такие растения являются раннецветущими и формируют плотные куртины (это многие травы, хвойные, кустарники).

В следующей теме мы рассмотрим соцветия растений.

Информация о статье:

Анатомия цветкаВ статье описывается анатомия или строение цветка.

Date Published: 12/31/2017
В статье описаны строение цветка растения, как происходит формирование пыльцы, оплодотворение и т.д.

10 / 10 stars

Посмотреть список всех материалов по биологии.

Типы опыления

Имеется два основных типа опыления: самоопыление, или идиога́мия (когда растение опыляется собственной пыльцой) и перекрёстное опыление, или ксенога́мия.

Перекрёстному опылению способствует разделение полов в цветке и распределение обоеполых и однополых цветков между растениями в популяции: однодомные и двудомные.

Перекрёстное опыление требует участия посредника, который бы доставил пыльцевые зёрна от тычинки к рыльцу пестика; в зависимости от этого различают следующие типы опыления:

Шмель, перепачканный в пыльце, на цветке крокуса

  • Биотическое опыление (при помощи живых организмов)
    • Энтомофилия — опыление насекомыми; как правило, это пчёлы, осы, иногда — муравьи (Hymenoptera), жуки (Coleoptera), бабочки (Lepidoptera), а также мухи (Diptera). Пыльца цветков, как правило, крупная и очень клейкая. Некоторые виды растений (например, лютики) имеют чашевидную форму цветка, чтобы залезшее в него насекомое «пачкалось» о пыльцу, улучшая процесс опыления.
    • Зоофилия — опыление при помощи позвоночных животных: птицами (орнитофилия, агентами опыления выступают такие птицы как колибри, нектарницы, медососы), летучими мышами (хироптерофилия), грызунами, некоторыми сумчатыми (в Австралии), лемурами (на Мадагаскаре).
    • Искусственное опыление — перенесение пыльцы с тычинок на пестики цветков при посредстве человека.

Опыление некоторых растений из семейства Рдестовые иногда осуществляется с помощью улиток.

Животные, которые осуществляют опыление, называются опылителями.

  • Абиотическое опыление
    • Анемофилия — опыление с помощью ветра, очень распространено у злаков, большинства хвойных и многих лиственных деревьев.
    • Гидрофилия — опыление при помощи воды, распространено у водных растений.

Около 80,4 % всех видов растений имеют биотический тип опыления, 19,6 % опыляются при помощи ветра.

Гейтоногамия — соседственное опыление, одна из форм самоопыления, опыление рыльца пестика одного цветка пыльцой другого цветка того же растения.

По отношению растений к опылителям

По отношению растений к имеющемуся спектру опылителей выделяют:

  • эуфилия — способность к опылению широким спектром специализированных опылителей;
  • олигофилия — приспособленность к опылению несколькими родственными таксонами или опылителями одной жизненной формы;
  • монофилия — опыление одним видом насекомых;

С другой стороны выделяют следующие уровни приспособленности насекомых к опылению тех или иных растений:

  • полилектия — способность посещать широкий спектр растений различных семейств;
  • олиголектия — способность посещать ограниченную группу растений, как правило, представителей одного семейства или растений с одним типом цветка;
  • монолектия — облигатное посещение для питания одного вида или рода растений;

Эволюционное значение

Самоопыление в эволюционном плане имеет отрицательное значение. В соответствии с современными представлениями, для эволюции необходимо свободное скрещивание, которое обеспечивается перекрестным опылением. Именно оно повышает разнообразие аллелей (степени проявления гена) в популяциях. А самоопыление, наоборот, ведет к гомозиготности (однотипности) аллелей. Но при определенных обстоятельствах самоопыление может вести к изоляции новых форм, обособлению и фиксации в популяции аллелей, дающих благоприятные признаки растению. Именно в этом и заключается положительное эволюционное значение чередования автогамии и ксеногамии.

Опыление

Способы искусственного опыления

Опыление томатов проводят в утреннее время, так как пыльца созревает ночью. Делается это следующими способами:

  1. Для искусственного опыления используются подручные средства – кисточки, зубные щетки или шарики из ваты. Этот способ предельно прост – щеткой или кисточкой проводят по одному цветку, затем переносят пыльцу на другое соцветие. При использовании зубной щетки ее подносят к одному цветку и аккуратно поводят внутри бутона, затем располагают над следующим бутоном и делают то же самое. В результате пыльца осыпается внутрь.
  2. Хорошо подойдет для процесса опыления направленная воздушная струя. Для создания искусственного потока кислорода, используют вентилятор или фен. Иногда огородники просто встряхивают кусты, чтобы пыльца перелетала с одного бутона на другой. Искусственный ветер не должен быть сильным: в противном случае пыльца разлетится по всей теплице и упадет на землю. Располагайте источник воздушного потока максимально далеко от цветков. При этом он не должен быть горячим.
  3. Процедура встряхивания кустов выполняется максимально быстро. Для получения крепких завязей, гарантирующих урожай, слегка постучите по стеблю, встряхните растение, и пыльца осыплется на пестик. А если у вас кусты подвязаны, то стучать лучше не по стеблю, а по шпалере, чтобы свести к минимуму контакт с растением.

Иногда одного искусственного опыления недостаточно. Культура в естественных условиях произрастания дает мало завязей, в результате урожайность снижается. Для стимуляции процесса опыления применяются некоторые препараты:

  1. «Завязь». Это готовый стимулятор формирования плодов, универсальное и экологически чистое средство.
  2. «Бутон». Ускоряет образование плодов, содержит натриевую соль, стимулирующую развитие кустов. В состав входит марганец, бор и медь. Замачивание семян и обработка растений перед посевом уменьшает число пустоцветов и ускоряет рост молодых побегов.
  3. «Гибберрос». Регулятор роста культуры на биологической основе. Увеличивает количество завязей, стимулирует развитие томатов, повышает скорость созревания урожая и дает иммунитет к заболеваниям. Препаратом опрыскиваются растения, также «Гибберрос» используется для замачивания семян перед посевом.
  4. Борная кислота». На ведро горячей воды разведите 10 г порошка. Раствор размешайте и остудите до температуры +25 °С. Перелейте в емкость и опрыскайте уже опыленное растение.
  5. «Томатон». Стимулятор плодоношения. Используется в теплицах, парниках или на открытом грунте при разных климатических условиях. Препарат содержит ауксин, который способствует поступлению в корневую систему питательных веществ и снижению роста боковых стеблей. Уровень урожайности повышается примерно на 20-40 %, в зависимости от условий произрастания и наличия надлежащего ухода. Урожай созревает на 7-12 дней раньше.

Своевременное опыление увеличит объем урожая и предупредит деформацию плодов. Выполнение процедуры вручную требует аккуратности: у томатов завязи хрупкие и нежные, легко ломаются.

Функции пластид

Функции пластид зависят от их типа. Хлоропласты выполняют фотосинтезирующую функцию. В лейкопластах накапливаются запасные питательные вещества: крахмал в амилопластах, жиры в элайопластах (липидопластах), белки в протеинопластах.

Хромопласты, за счет содержащихся в них пигментов-каротиноидов, окрашивают различные части растений – цветки, плоды, корнеплоды, осенние листья и др. Яркий окрас часто служит своеобразным сигналом для животных-опылителей и распространителей плодов и семян.

В дегенерирующих зеленых частях растений хлоропласты превращаются в хромопласты. Пигмент хлорофилл разрушается, поэтому остальные пигменты, несмотря на малое количество, становятся в пластидах заметными и окрашивают туже листву в желто-красные оттенки.

Оплодотворение

Оплодотворение осуществляется, как правило, после опыления. У каждого растения оплодотворение осуществляется по-разному, чаще через пару недель, а иногда через год.

Определение 2

Оплодотворение – процесс обусловливающие слияния мужской и женской половых клеток. Во время опыления пыльца находится на рыльце.
Для оплодотворения, непосредственно, требуется чтобы, пыльца была созревшей и жизнестойкой, и зародышевый смешок был сформирован.

Развивается и растет пыльцевая трубка в направлении завязи, через рыльце и столбика. В завязи пыльцевая трубка проникает в семенной зачаток и достигает зародышевого мешка. Пыльцевая трубка, достигнув яйцеклетки, разрывается, и из нее выходят два спермия, а вегетативная клетка разрушается. Один спермий сливается с яйцеклеткой, другой с диплоидным ядром. В первом случае растет зародыш нового организма, во втором образуется триплоидная клетка, для формирования эндосперма. Таким образом, осуществляется двойное оплодотворение. Зародыш вмести с эндоспермом, зарождают семя, скрытое под кожурой. После оплодотворения завязь формирует плод.

Приспособление растений к опылению

Рассмотрим первую группу способов. В природе, как правило, встречается энтомофилия. Эволюция растений и переносчиков пыльцы проходила параллельно. Энтомофильные особи легко выделяются среди прочих. У растений и переносчиков есть взаимные приспособления. В некоторых случаях они настолько узкие, что культура не в состоянии самостоятельно существовать без своего агента (или наоборот). Насекомых привлекает:

  1. Цвет.
  2. Пища.
  3. Запах.

Кроме этого, некоторые насекомые используют цветки как убежище. Например, они прячутся там ночью. Температура в цветке выше, чем у внешней среды, на несколько градусов. Существуют насекомые, которые сами размножаются в культурах. Например, осы-хальциды используют для этого цветки.

Абиотический

Они не привлекают животных-опылителей. Тем не менее у них часто есть наборы общих черт.

Среда подорожника , опыляемая ветром или насекомыми

Ветровое опыление (анемофилия)

Цветы могут быть мелкими и невзрачными, а также зелеными и неброскими. Они производят огромное количество относительно мелких пыльцевых зерен (следовательно, опыляемые ветром растения могут быть аллергенами , но редко являются аллергенами , опыляемыми животными). Их рыльца могут быть большими и перистыми, чтобы ловить пыльцевые зерна. Насекомые могут посещать их для сбора пыльцы; в некоторых случаях они являются неэффективными опылителями и оказывают слабый естественный отбор на цветы, но есть также примеры амбофильных цветов, которые опыляются как ветром, так и насекомыми. Анемофильные или опыляемые ветром цветы, как правило, маленькие и незаметные, не обладают запахом и не выделяют нектар. Пыльники могут давать большое количество пыльцевых зерен, в то время как тычинки, как правило, длинные и выступают из цветка.

Опыление воды (гидрофильность)

Опыляемые водой растения являются водными растениями, и пыльца попадает в воду. Следовательно, водные потоки действуют как переносчики пыльцы подобно ветровым течениям. Их цветы, как правило, маленькие и незаметные, с большим количеством пыльцевых зерен и большими перистыми рыльцами, которые собирают пыльцу. Однако это относительно редко (только 2% опыления приходится на гидрофильное растение), и большинство водных растений опыляются насекомыми с цветами, которые появляются в воздухе. Валлиснерия — тому пример.

Как правильно опылять томаты

Без опыления не будет урожая. В теплице не всегда соблюдаются требования, которые помогают растению опыляться и формировать плоды. Чтобы культура успешно сформировала плодовые завязи, ей необходимы специальные условия.

Цветение и особенности опыления томатов

Помидоры в теплице цветут и опыляются только при соблюдении следующих условий:

  • полив кустов производится только под корень;
  • почва увлажняется нечасто, но обильно (2 раза в неделю по 3 л воды на растение);
  • производится рыхление, минимум 2 раза в месяц;
  • после каждого полива почва мульчируется торфом или перегноем;
  • влажность воздуха не ниже 60% и не выше 75%;
  • температура воздуха в теплице не ниже +18 и не выше +30 °С.

Некоторые примеры разных типов опыления

Томаты (факультативное самоопыление) — цветки имеют и Пестики, и тычинки. Тычинки срослись так, что в большинстве случаев пестик оплодотворяется собственной пыльцой.

Тополь и облепиха — двудомные растения: на мужских деревьях имеются только цветки с пыльцой, а плоды дают женские деревья (у тополя в виде пуха). Если выращивать из черенков только мужские тополя, то можно избавиться от пуха.

У облепихи нужно обращать внимание на то, что плоды дают только женские кусты, но если поблизости не будет мужского куста облепихи, то и женское растение не сможет дать плодов. Обычно на 10 женских кустов достаточно одного мужского.. Кукуруза — однодомное растение с однополыми цветками

Мужские цветки собраны на верхушке метёлкой, женские — на стволе початками.

Кукуруза — однодомное растение с однополыми цветками. Мужские цветки собраны на верхушке метёлкой, женские — на стволе початками.

Также однодомными растениями с однополыми цветками являются тыквенные — огурцы, тыква и т. п. У них на одном растении растут цветки разного типа, хотя внешне и не так сильно отличающиеся. Но мужские цветки после опыления отмирают и отпадают. Из женских же вырастают плоды.

Опыление ветром

Ветроопыляемые покрытосеменные растения по-видимому эволюционно возникли раньше насекомоопыляемых. При опылении ветром не нужны крупные пахнущие цветки или соцветия. Однако требуется производить куда больше пыльцы, так как основная часть ее не достигает цели, опадает на землю и уносится мимо цветков.

Опыление ветром наиболее эффективно, если растения одного вида растут группами, а не по одному. Так на кукурузном поле опыление почти точно произойдет, а вот если посадить несколько растений кукурузы в саду, то к осени получатся полупустые початки, так как на рыльца цветков попадало мало пыльцы.

Многие деревья являются ветроопыляемыми. Их пыльца легкая и сухая. Такие деревья растут зарослями (березовая роща, орешник) и цветут еще до распускания листвы, чтобы она не мешала переносу пыльцы.

У растений, которые специализируются на опылении ветром, мелкие невзрачные цветки, так как яркие и большие им не нужны. Зато часто наблюдаются длинные тычиночные нити и крупные пыльники. Такие тычинки свисают из цветка, ветер их колышет, в результате чего из них легко высыпается пыльца и уносится ветром.

Фотосинтез (кратко)

В растениях (преимущественно в их листьях) на свету протекает фотосинтез. Это процесс, при котором из углекислого газа и воды образуется органическое вещество глюкоза (один из видов сахаров). Далее глюкоза в клетках превращается в более сложное вещество крахмал. И глюкоза, и крахмал являются углеводами.

В процессе фотосинтеза образуется не только органическое вещество, но также, в качестве побочного продукта, выделяется кислород.

Углекислый газ и вода — это неорганические вещества, а глюкоза и крахмал — органические. Поэтому часто говорят, что фотосинтез — это процесс образования органических веществ из неорганических на свету.

Только растения, некоторые одноклеточные эукариоты и некоторые бактерии способны к фотосинтезу. В клетках животных и грибов такого процесса нет, поэтому они вынуждены поглощать из окружающей среды органические вещества. В связи с этим растения называют автотрофами, а животных и грибов — гетеротрофами.

Процесс фотосинтеза у растений протекает в хлоропластах, в которых содержится зеленый пигмент хлорофилл.

Итак, для протекания фотосинтеза необходимы:

  • хлорофилл,

  • свет,

  • вода,

  • углекислый газ.

В процессе фотосинтеза образуются:

  • органические вещества,

  • кислород.

Растения приспособлены к улавливанию света. У многих травянистых растений листья собраны в так называемую прикорневую розетку, когда листья не затеняют друг друга. Для деревьев характерна листовая мозаика, при которой листья растут так, чтобы как можно меньше затенять друг друга. У растений листовые пластинки могут поворачиваться к свету за счет изгибов черешков листьев. При всем этом существуют тенелюбивые растения, которые могут расти только в тени.

Вода для фотосинтеза поступает в листья из корней по стеблю. Поэтому важно, чтобы растение получало достаточное количество влаги. При недостатке воды и некоторых минеральных веществ процесс фотосинтеза тормозится

Углекислый газ для фотосинтеза берется непосредственно из воздуха листьями.Кислород, который вырабатывается растением в процессе фотосинтеза, наоборот, выделяется в воздух. Газообмену способствуют межклетники (промежутки между клетками).

Образовавшиеся в процессе фотосинтеза органические вещества отчасти используются в самих листьях, но в основном оттекают во все другие органы и превращаются в другие органические вещества, используются при энергетическом обмене, превращаются в запасные питательные вещества.

Пластиды

Пластиды — это органоиды клеток растений и некоторых фотосинтезирующих простейших. У животных и грибов пластид нет.

Пластиды делятся на несколько типов. Наиболее важный и известный — хлоропласт, содержащий зеленый пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Другими видами пластид являются разноцветные хромопласты и бесцветные лейкопласты. Также выделяют амилопласты, липидопласты, протеинопласты, которые часто считают разновидностями лейкопластов.

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Опыление

Искусственное опыление томатов, огурцов и других культур – технология работ

Томаты — самоопыляемая культура. Плоды этих растений завязываются после оплодотворения пестика цветка собственной пыльцой.

Если этот процесс по каким-либо причинам нарушается, томат не формирует полноценных плодов, в результате чего образуются пустотелые завязи, которые растение сбрасывает за ненадобностью.

Чтобы с кустами томатов не произошло такой беды, надо знать, почему плоды не формируются и уметь устранять причины такого явления.

Как помочь процессу опыления культуры, если она не хочет этого делать сама, и каковы секреты получения обильного урожая – читайте далее.

Как пчелы опыляют растения?

  • Пчела – это самый известный «опылитель» различных цветков. Пчелки могут опылять растения, имеющие желтые либо голубые цветочки, выразительные орнаменты.
  • Нектарин у таких культур расположен возле основания венчика. Это комфортно для строения ротовой полости пчелы, не совсем комфортно жукам.

    Существует огромное количество типов пчел, эти насекомые опыляют самые разнообразные растения.

  • Также известно, что шмель опыляет растения. Он опыляет клевер, который не доступен обыкновенным пчелам. Кроме того, благодаря шмелю размножаются такие культуры, как льнянка, люпин.

Пчелки

Как муравей опыляет растения?

  • Муравьи считаются не лучшими опылителями. На это существуют некоторые причины. Так, например, у рабочих насекомых данного вида отсутствуют крылья.
  • Поэтому муравьи могут опылять те растения, которые находятся поблизости с ними. Как правило, насекомые опыляют только одно растение. Помимо этого, когда пыльца попадает на муравья, она становится не такой жизнеспособной. А когда насекомое потребляет нектар, оно может повредить растение.
  • Также муравьи являются разносчиками различных паразитов, бактерий, а также грибков.

    Но как бы там ни было они достаточно активно опыляют многие цветки, например, вересковые, некоторые типы орхидей.

Перекрестное опыление

Замечание 1

Перекрестное опыление зависит от внешних факторов: птиц, насекомых, ветра и воды.

Анемофилия – ветроопыление. Данное опыление характерно для растений у которых мелкие цветки часто собранные в соцветия. Цветки имеют достаточно много пыльцы. Пыльца сухая и мелкая, выбрасывается она наружу при помощи пыльника. При чем пыльник находится на длинных тонких нитях. Рыльца пестика широкие и длинные, высовываются из цветков, что способствует лучшему попаданию на них пыльцы. Такое опыление характерно для злаковых, и для тех у кого соцветие сережка, например, ольха, береза, орех, хмель, тополь

Для крапивы и конопли, у которых цветок состоит из чашелистиков, простого околоцветника, что не привлекают внимание опылителей

Энтомофилия – опыление насекомыми. Растения, которые имеют нектар, аромат, цвет и размер цветков, липкую пыльцу с выростами опыляются насекомыми. Насекомые переносят пыльцу из одного цветка на рыльца другого цветка, обеспечивая, таким образом, опыление для двуполых растений. Например, маки, ромашки, калина, шалфей ,молочай, гречиха и др.

Орнитофилия – опыление птицами. Такое опыление характерно для тропических растений с яркими цветками птичкой колибри.

Гидрофилия – опыление водой. Водные растения, имеющие пыльцу и рыльце нитеобразной формы переносятся водой, или иногда слизнями. К водным гидрофильным растениям относят резуху, взморника, роголистку, наяда, элодею, рунию.

Способы

Метод опыления зависит от агентов переноса зерен и структуры цветка. Аллогамия и автогамия могут осуществляться с помощью одних и тех же факторов. Ими, в частности, выступают ветер, животные, человек, вода. Наибольшим разнообразием отличаются способы при аллогамии. Выделяют следующие их группы:

  1. Биологические – опыление растений осуществляется с помощью живых организмов. В этой группе выделяют несколько подгрупп. Классификация осуществляется в зависимости от переносчика. Так, осуществляется опыление растений насекомыми (энтомофилия), птицами (орнитофилия), летучими мышами (хироптерофилия). Существуют и другие способы – с помощью моллюсков, млекопитающих и пр. Однако они выявляются в природе достаточно редко.
  2. Абиотические – опыление растений связано с влиянием небиологических факторов. В этой группе различают перенос зерен с помощью ветра (анемофилию), воды (гидрофилию).

Способы, которыми осуществляется опыление растений, считаются адаптациями к конкретным окружающим условиям. В генетическом плане они менее важны, чем типы.

Опыление

Строение пластид

Большинство пластид относится к двумембранным органоидам, у них есть внешняя и внутренняя мембраны. Однако встречаются организмы, чьи пластиды имеют четыре мембраны, что связано с особенностями их происхождения.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры как тилакоиды, граны (стопки тилакоидов), ламелы – удлиненные тилакоиды, соединяющие соседние граны. Внутренне содержимое пластид обычно называют стромой. В ней помимо прочего находятся крахмальные зерна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям — путем внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами.

Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Это не значит, что в пластиды не поступают белки и РНК из цитоплазмы. Часть генов, управляющей их функционированием, находится как раз в ядре.