Как найти область значения функции?

Область определения функции с логарифмом

Третья распространённая функция – логарифм. В качестве образца я буду рисовать натуральный логарифм, который попадается примерно в 99 примерах из 100. Если некоторая функция содержит логарифм , то в её область определения должны входить только те значения «икс», которые удовлетворяют неравенству . Если логарифм находится в знаменателе: , то дополнительно накладывается условие  (так как ).

Пример 9

Найти область определения функции

Решение: в соответствии с вышесказанным составим и решим систему:

Графическое решение для чайников:Как найти область значения функции?Ответ: область определения:

Остановлюсь ещё на одном техническом моменте – у меня ведь не указан масштаб и не проставлены деления по оси. Возникает вопрос: как выполнять подобные чертежи в тетради на клетчатой бумаге? Отмерять ли расстояние между точками по клеточкам строго по масштабу? Каноничнее и строже, конечно, масштабировать, но вполне допустим и схематический чертёж, принципиально отражающий ситуацию.

Пример 10

Найти область определения функции

Для решения задачи можно использовать метод предыдущего параграфа – проанализировать, как парабола расположена относительно оси абсцисс. Ответ в конце урока.

Как видите, в царстве логарифмов всё очень похоже на ситуацию с квадратным корнем: функция  (квадратный трёхчлен из Примера №7) определена на интервалах , а функция  (квадратный двучлен из Примера №6) на интервале . Неловко уже и говорить, функции типа  определены на всей числовой прямой.

Полезная информация: интересна типовая функция , она определена на всей числовой прямой кроме точки . Согласно свойству логарифма , «двойку» можно вынести множителем за пределы логарифма, но, чтобы функция не изменилась, «икс» необходимо заключить под знак модуля: . Вот вам и ещё одно «практическое применение» модуля = ). Так необходимо поступать в большинстве случаев, когда вы снОсите чётную степень, например: .  Если же основание степени  заведомо положительно, например, , то в знаке модуля отпадает необходимость и достаточно обойтись круглыми скобками: .

Чтобы не повторяться, давайте усложним задание:

Пример 11

Найти область определения функции

Решение: в данной функции у нас присутствует и корень и логарифм.

Подкоренное выражение должно быть неотрицательным: , а выражение под знаком логарифма – строго положительным: . Таким образом, необходимо решить систему:

Многие из вас прекрасно знают или интуитивно догадываются, что решение системы должно удовлетворять каждому условию.

Исследуя расположение параболы  относительно оси , приходим к выводу, что неравенству  удовлетворяет интервал  (синяя штриховка):Как найти область значения функции?
Неравенству , очевидно, соответствует «красный» полуинтервал  .

Поскольку оба условия должны выполняться одновременно, то решением системы является пересечение данных интервалов. «Общие интересы» соблюдены на полуинтервале .

Ответ: область определения:

Типовое неравенство , как демонстрировалось в Примере №8,  нетрудно разрешить и аналитически.

Найденная область определения не изменится для «похожих функций», например, для  или .  Также можно добавить какие-нибудь непрерывные на  функции, например: , или так: , или даже так: . Как говорится, корень и логарифм – вещь упрямая. Единственное, если одну из функций «сбросить» в знаменатель, то область определения изменится (хотя в общем случае это не всегда справедливо). Ну а в теории матана по поводу этого словесного… ой… существуют теоремы.

Пример 12

Найти область определения функции

Это пример для самостоятельного решения. Использование чертежа вполне уместно, так как функция не самая простая.

Ещё пару примеров для закрепления материала:

Пример 13

Найти область определения функции

Решение: составим и решим систему:
Все действия уже разобраны по ходу статьи. Изобразим на числовой прямой интервал, соответствующий неравенству  и, согласно второму условию, исключим две точки:Как найти область значения функции?
Значение  оказалось вообще не при делах.

Ответ: область определения

Небольшой математический каламбур на вариацию 13-го примера:

Пример 14

Найти область определения функции

Это пример для самостоятельного решения. Кто пропустил, тот в пролёте 😉

Завершающий раздел урока посвящен более редким, но тоже «рабочим» функциям:

Графики элементарных функций

Линейная функция

Линейная функция — это функция вида y=kx+b, где k и b некоторые действительные числа.

Если b=0, то функция примет вид y=kx и будет называться прямой пропорциональностью.

D(f) : x \in R;\enspace E(f) : y \in R

График линейной функции — прямая.

Угловой коэффициент k прямой y=kx+b вычисляется по следующей формуле:

k= tg \alpha , где \alpha — угол наклона прямой к положительному направлению оси Ox.

1) Функция монотонно возрастает при k > 0.

Например: y=x+1

2) Функция монотонно убывает при k < 0.

Например: y=-x+1

3) Если k=0, то придавая b произвольные значения, получим семейство прямых параллельных оси Ox.

Например: y=-1

Обратная пропорциональность

Обратной пропорциональностью называется функция вида y=\frac {k}{x}, где k — отличное от нуля, действительное число

D(f) : x \in \left \{ R/x \neq 0 \right \}; \: E(f) : y \in \left \{R/y \neq 0 \right \}.

Графиком функции y=\frac {k}{x} является гипербола.

1) Если k > 0, то график функции будет располагаться в первой и третьей четверти координатной плоскости.

Например: y=\frac{1}{x}

2) Если k < 0, то график функции будет располагаться во второй и четвертой координатной плоскости.

Например: y=-\frac{1}{x}

Степенная функция

Степенная функция — это функция вида y=x^n, где n — отличное от нуля, действительное число

1) Если n=2, то y=x^2. D(f) : x \in R; \: E(f) : y \in [0; +\infty) .

Графиком функции y=x^2 является парабола.

2) Если n=3, то y=x^3. D(f) : x \in R; \: E(f) : y \in R .

Графиком функции y=x^3 является кубическая парабола.

3) Если n=\frac{1}{2}, то y=x^\tfrac{1}{2} или y=\sqrt{x}. D(f) : x \in [0; +\infty ); \: E(f) : y \in [0; +\infty )

4) Если n=\frac{1}{3}, то y=x^\tfrac{1}{3} или y=\sqrt{x}. D(f) : x \in R; \: E(f) : y \in R

Как найти область значения функции?

Показательная функция

Показательная функция — это функция вида y=a^x, где a=const, a > 0, a \neq 1

D(f) : x \in R; \: E(f) : y \in (0; +\infty ).

Графиком показательной функции является экспонента.

1) Функция будет монотонно возрастать при a > 1.

Например: y=2^x

2) Функция монотонно убывает при 0 < a < 1.

Например: y=\left (\frac{1}{2} \right )^{x}

Логарифмическая функция

Логарифмическая функция — это функция вида y=\log_{a}x, где a — действительное число, a > 0, \: a \neq 1

D(f) : x \in (0; +\infty ); \: E(f) : y \in R.

1) Функция монотонно возрастает при a > 1.

Например: y=\log_{2}x

2) Функция будет монотонно убывать при 0 < a < 1.

Например: y=\log_{\tfrac{1}{2}}x

Тригонометрическая функция

К тригонометрическим функциям относят функции вида:

1) y=\sin x. D(f) : x \in R; \: E(f) : y \in ; основной период функции T=2 \pi

Как найти область значения функции?

2) y = \cos x. D(f) : x \in R; \: E(f) : y \in ; основной период функции T=2 \pi

Как найти область значения функции?

3) y = tg x. D(f) : x \in \left \{ R /x \neq \frac{\pi}{2}+\pi n\right \}, n \in \mathbb{Z}; \: E(f) : y \in R; основной период функции T= \pi

4) y = ctg x. D(f) : x \in \left \{ R /x \neq 0+\pi n\right \}, n \in \mathbb{Z}; \: E(f) : y \in R; основной период функции T= \pi

Обратные тригонометрические функции

К обратным тригонометрическим функциям относят функции вида:

1) y=\arcsin x. D(f) : x \in , \: E(f) : y \in \left

2) y=arccos x. D(f) : x \in , \: E(f) : y \in

3) y=arctg x. D(f) : x \in R, \: E(f) : y \in \left (-\frac{\pi}{2}; \frac{\pi}{2} \right )

Как найти область значения функции?

4) y= arcctg x. D(f) : x \in R, \: E(f) : y \in \left (0; \pi \right )

Как найти область значения функции?

Определение

Если на множествеX{\displaystyle X} задана функция, которая отображает множество X{\displaystyle X} в другое множество, то множество X{\displaystyle X} называется областью определения или областью задания функции.

Более формально, если задана функция f{\displaystyle f}, которая отображает множество X{\displaystyle X} в Y{\displaystyle Y}, то есть: fX→Y{\displaystyle f\colon X\to Y}, то

множество X{\displaystyle X} называется областью определения или областью задания функции f{\displaystyle f} и обозначается D(f){\displaystyle D(f)} или domf{\displaystyle \mathrm {dom} \,f} (от англ. domain — «область»).

Иногда рассматривают функции, определенные на подмножестве D{\displaystyle D} некоторого множества X{\displaystyle X}. В этом случае множество X{\displaystyle X} иногда называют областью отправления функции f{\displaystyle f}.

Об этой статье

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 14 человек(а). Количество просмотров этой статьи: 309 852.

Категории: Математика

English:Find the Range of a Function

Italiano:Trovare il Codominio o Rango di una Funzione

Deutsch:Den Wertebereich einer mathematischen Funktion bestimmen

Español:encontrar la imagen de una función matemática

Français:déterminer l’ensemble des images d’une fonction

Português:Encontrar o Intervalo de uma Função em Matemática

Bahasa Indonesia:Mencari Range Sebuah Fungsi dalam Matematika

Nederlands:Het bereik van een functie bepalen

ไทย:หาพิสัยของฟังก์ชัน

한국어:수학에서 함수의 범위 찾는 법

हिन्दी:मैथ में किसी फंक्शन की रेंज पता करें (Find the Range of a Function in Math)

Печать

Многозначные функции

Как найти область значения функции?Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус: . Она является обратной к функции синус и определяется из уравнения:(1)   . При заданном значении независимой переменной , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть(2)   . При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:(2.n)   , где – целое. В результате, для каждого значения , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией. А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции.

Многозначная функция – это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции – это одна из функций, входящих в многозначную функцию.

Однозначная функция – это функция.

Использованная литература: О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004. Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003. С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.