Модели мутагенеза
В настоящее время существует несколько подходов для объяснения природы и механизмов образования мутаций. Общепринятой, в настоящее время, является полимеразная модель мутагенеза. Она основана на идее о том, что единственной причиной образования мутаций являются случайные ошибки ДНК-полимера. В предложенной Уотсоном и Криком таутомерной модели мутагенеза впервые была высказана идея о том, что в основе мутагенеза лежит способность оснований ДНК находиться в различных таутомерных формах. Процесс образования мутаций рассматривается как чисто физико-химическое явление. Полимеразно-таутомерная модель ультрафиолетового мутагенеза опирается на идею о том, что при образовании цис-син циклобутановых пиримидиновых димеров может изменяться таутомерное состояние входящих в них оснований. Изучается склонный к ошибкам и SOS-синтез ДНК, содержащей цис-син циклобутановые пиримидиновые димеры. Существуют и другие модели.
Полимеразная модель мутагенеза
В полимеразной модели мутагенеза считается, что единственной причиной образования мутаций являются спорадические ошибки ДНК-полимераз. Впервые полимеразная модель ультрафиолетового мутагенеза была предложена Бреслером. Он предположил, что мутации появляются в результате того, что ДНК-полимеразы напротив фотодимеров иногда встраивают некомплементарные нуклеотиды. В настоящее время такая точка зрения является общепринятой. Известно А-правило (A-rule), согласно которому напротив поврежденных участков ДНК-полимераза чаще всего встраивает аденины. Полимеразная модель мутагенеза объясняет природу мишенных мутаций замены оснований.
Таутомерная модель мутагенеза
Уотсон и Крик предположили, что в основе спонтанного мутагенеза лежит способность оснований ДНК переходить при некоторых условиях в неканонические таутомерные формы, влияющие на характер спаривания оснований
Эта гипотеза привлекала к себе внимание и активно развивалась. Обнаружены редкие таутомерные формы цитозина в кристаллах оснований нуклеиновых кислот, облученных ультрафиолетовым светом
Результаты многочисленных экспериментальных и теоретических исследований однозначно говорят о том, что основания ДНК могут переходить из канонических таутомерных форм в редкие таутомерные состояния. Было выполнено много работ посвященных исследованиям редких таутомерных форм оснований ДНК. С помощью квантовомеханических расчетов и метода Монте-Карло было показано, что таутомерное равновесие в цитозин — содержащих димерах и в гидрате цитозина сдвинуто по направлению к их имино формам как в газовой фазе, так и в водном растворе. На этой основе объясняется ультрафиолетовый мутагенез. В паре гуанин — цитозин устойчивым будет только одно редкое таутомерное состояние, в котором атомы водородов первых двух водородных связей, отвечающих за спаривание оснований, одновременно изменяют свои положения. А поскольку при этом изменяются положения атомов водорода, участвующих в Уотсон-Криковском спаривании оснований, то следствием может быть образование мутаций замены оснований, транзиций от цитозина к тимину или образование гомологичных трансверсий от цитозина к гуанину. Участие редких таутомерных форм в мутагенезе обсуждалось неоднократно.
Другие модели мутагенеза
В работах Полтева с соавторами предложен и обоснован молекулярный механизм узнавания полимеразами комплементарных пар оснований нуклеиновых кислот. На основании этой модели были изучены некоторые закономерности спонтанного и индуцированного аналогами оснований мутагенеза. Объяснено образование мутаций замены оснований в предположении, что главной причиной мутагенеза является образование неканонических пар оснований, типа Хугстиновских пар..
Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина, что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).
Терпимость к холоду
Жители холодных мест проявляют отличные физиологические реакции на низкие температуры, если сравнивать с теми, кто живет в более мягких условиях. Кроме того, похоже на то, что должен хотя бы частично присутствовать генетический компонент в этом приспособленчестве; потому что даже если кто-то другой переберется в холодную окружающую среду и будет жить там в течение многих десятилетий, его тело никогда не достигнет того же уровня адаптации, как местные жители, которые живут в таких условиях поколениями. Ученые выяснили, что коренные сибиряки лучше приспособлены к холоду даже по сравнению с русскими, живущими в их обществе.
Частично эта адаптация объясняет, почему коренные австралийцы могут спать на земле холодными ночами (без одеяла и одежды) и чувствуют себя замечательно; и почему эскимосы большую часть своей жизни могут жить при отрицательной температуре.
Человеческое тело больше приспособлено к жизни в тепле, чем в холоде, поэтому удивительно, что люди вообще могут жить на морозе, не говоря уж о процветании.
Мутация — вред или польза?
Мутации, происходящие в «незначащих» («молчащих») участках ДНК, не изменяют признаки организма и могут спокойно передаваться из поколения в поколение (на них не будет действовать естественный отбор). Такие мутации можно считать нейтральными. Также нейтральными являются мутации, когда участок гена заменяется на синонимичный. При этом, хотя последовательность нуклеотидов в определенном участке и будет отличаться, но синтезироваться будет такой же белок (с той же последовательностью аминокислот).
Однако мутирование может затронуть значащий ген, изменить аминокислотную последовательность синтезируемого белка, а, следовательно, вызвать изменение признаков организма. В последствии, если концентрация мутации в популяции достигнет определенного уровня, то это приведет к изменению характерного признака всей популяции.
В живой природе мутации возникают как ошибки в ДНК, поэтому все они априори вредны. Большинство мутаций понижают жизнеспособность организма, вызывают различные заболевания. Мутации, возникающие в соматических клетках, не передаются следующему поколению, но в результате митоза образуются дочерние клетки, составляющие ту или иную ткань. Нередко соматические мутации приводят к образованию различных опухолей и других заболеваний.
Мутации, возникающие в половых клетках, могут быть переданы следующему поколению. В стабильных условиях внешней среды почти все изменения генотипа оказываются вредными. Но если условия среды изменились, то может оказаться, что ранее вредная мутации станет полезной.
Например, мутация, вызывающая образование коротких крыльев у какого-нибудь насекомого, скорее всего будет вредна в популяции, живущей в местах, где нет сильного ветра. Данная мутация будет сродни уродству, заболеванию. Обладающие ею насекомые с трудом будут находить партнеров для спаривания. Но если на местности начнут дуть более сильные ветры (например, в результате пожара участок леса был уничтожен), то насекомых с длинными крыльями будет сносить ветром, им будет тяжелее перемещаться. В таких условиях преимущество могут получить короткокрылые особи. Они чаще длиннокрылых будут находить партнеров и пищу. Через некоторое время в популяции окажется больше короткокрылых мутантов. Таким образом, мутация закрепится и превратится в норму.
Мутации лежат в основе естественного отбора и в этом их основная польза. Для организма же подавляющее число мутаций — это вред.
Проблема случайности мутаций
В 1940-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например, антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик.
Флуктуационный тест Лурии — Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашке Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал, что число устойчивых колоний из разных пробирок очень изменчиво — в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.
Метод реплик заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.
Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости).
Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определённых участках ДНК) мутации в механизмах иммунитета[источник не указан 2196 дней]. С их помощью создаётся разнообразие клонов лимфоцитов, среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции, в результате возникает иммунологическая память. (В работах Юрия Чайковского говорится и о других видах направленных мутаций.)
Последствия мутаций для клетки и организма
Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, — апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию, и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.
Мутация в соматической клетке сложного многоклеточного организма может привести к злокачественным или доброкачественным новообразованиям, мутация в половой клетке — к изменению свойств всего организма-потомка.
В стабильных (неизменных или слабо изменяющихся) условиях существования большинство особей имеют близкий к оптимальному генотип, а мутации вызывают нарушение функций организма, снижают его приспособленность и могут привести к смерти особи. Однако в очень редких случаях мутация может привести к появлению у организма новых полезных признаков, и тогда последствия мутации оказываются положительными; в этом случае они являются средством адаптации организма к окружающей среде и, соответственно, называются адаптационными.
Привыкшие к высоте
Тибетцы живут на высоте выше 4000 метров и привыкли дышать воздухом, который содержит на 40% меньше кислорода, чем на уровне моря. На протяжении веков их тела развивались, компенсируя недостаток кислорода, разрабатывая большие легкие и грудь, чтобы можно было вдыхать больше воздуха с каждым вдохом.
В отличие от живущих в равнинах людей, тела которых вырабатывают больше красных кровяных телец в условиях пониженного кислорода, на высоте люди эволюционировали, делая прямо противоположное: производят меньше кровяных тел. Дело в том, что хотя увеличение числа красных кровяных тел могут временно помочь человеку увеличить приток кислорода в тело, со временем они набиваются в крови и приводят к образованию сгустков, которые могут быть смертельно опасными. В дополнение к этому, шерпы обладают хорошим кровотоком в мозгу и в целом менее восприимчивы к высотной болезни.
Даже проживая на более низких высотах, тибетцы по-прежнему поддерживают эти черты; ученые обнаружили, что многие из этих адаптаций являются не просто фенотипическими отклонениями (то есть почему-то не обращаются на малых высотах), а генетической адаптацией. На участке ДНК, известном как EPAS1, произошло одно генетическое изменение, которое кодирует регуляторный белок. Этот белок обнаруживает кислород и контролирует производство красных кровяных клеток, объясняя, почему тибетцы не перепроизводят красные кровяные клетки, когда лишаются кислорода, в отличие от обычных людей.
Народ Хань, равнинные родственники тибетцев, не разделяют эти генетические характеристики. Эти две группы разделены примерно тремя тысячами лет, что говорит о том, что эти адаптации произошли порядка 100 поколений назад — это относительно короткое время в рамках эволюции.
Примечания
- Banerjee S. K., Borden A., Christensen R. B., LeClerc J. E., Lawrence C. W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uniduced cell // J. Bacteriol. — 1990. — 172. — P. 2105—2112.
- Jonczyk P., Fijalkowska I., Ciesla Z. Overproduction of the subunit of DNA polymerase III counteracts the SOS-mutagenic response of Esthetician coli // Proc. Nat. Acad. Sci. USA. — 1988. — 85. — Р. 2124—2127.
- Grebneva H. A. One of mechanisms of targeted substitution mutations formation at SOS-replication of double-stranded DNA containing cis-syn cyclobutane thymine dimers // Environ. Mol. Mutagen. — 2006. −47. — P. 733—745.
- Bresler S. E. Theory of misrepair mutagenesis // Mutat. Res. — 1975. — 29. — P. 467—472.
- ↑ Pham P., Bertram J. G, O’Donnell M., Woodgate R., Goodman M. F. A model for SOS-lesion-targeted mutations in Escherichia coli // Nature. — 2001. — 408. — P. 366—370.
- Taylor J.-S. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions // Mutation. Res. — 2002. −510. — P. 55-70.
- Danilov V. I., Les A., Alderfer J. L. A theoretical study of the cis-syn pyrimidine dimers in the gas phase and water cluster and a tautomer — bypass mechanism for the origin of UV-induced mutations // J. Biomol. Struct. Dyn. — 2001. — 19. — P. 179—191.
- Gorb L., Podolyan Y., Dziekonski P., Sokalski W. A., Leszczynski J. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study // J. Am. Chem. Soc. — 2004. — 126. — P. 10119-10129.
- Полтев В. И., Шулюпина Н. В., Брусков В. И. Молекулярные механизмы правильности биосинтеза нуклеиновых кислот. Компьютерное изучение роли полимераз в образовании неправильных пар модифицированными основаниями // Молек. биол. — 1996. — 30. — С. 1284—1298.
- Cannistraro V. J., Taylor J. S. Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots // J. Mol. Biol. — 2009. — 392. — P. 1145—1157.
- Тарасов В. А. Молекулярные механизмы репарации и мутагенеза. — М.: Наука, 1982. — 226 с.
- Friedberg E. C., Walker G. C., Siede W. DNA repair and mutagenesis. — Washington: ASM Press, DC, 1995.
- Ауэрбах Ш. Проблемы мутагенеза. — М.: Мир, 1978. — 463 с.
- Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. DNA repair and mutagenesis. — part 3. Washington: ASM Press. — 2006. 2nd ed.
- Levine J. G., Schaaper R. M., De Marini D. M. Complex frameshift mutations mediated by plasmid pkm 101: Mutational mechanisms deduced mutation spectra in Salmonella // Genetics. — 1994. — 136. — P. 731—746.
- Wang C.-I., Taylor J.-S. In vitro evidence that UV-induced frameshift and substitution mutations at T tracts are the result of misalignment-mediated replication past a specific thymine dimer // Biochemistry — 1992. — 31. — P. 3671-3681.
- Maor-Shoshani A., Reuven N. B., Tomer G., Livneh Z. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis // Proc. Natl. Acad. Sci. USA — 2000. — 97. — P. 565—570.
- Little J. B., Gorgojo L., Vetrovs H. Delayed appearance of lethal and specific gene mutations in irradiated mammalian cells // Int. J. Radiat. Oncol. Biol. Phys. — 1990. — 19. — P. 1425—1429.
- Niwa O. Radiation induced dynamic mutations and transgenerational effects // J. Radiation Research. — 2006. — 47. — P. B25-B30.
- Самигуллина Н. С. Практикум по селекции и сортоведению плодовых и ягодных культур: Учебное издание. — Мичуринск: Мичуринский государственный аграрный университет, 2006. — 197 с.
«Золотая кровь»
Есть восемь основных типов крови (первая, вторая, третья, четвертая или A, AB, B и O, каждая из которых может быть положительной или отрицательной), в настоящее время известно 35 групп кровяных систем с миллионами вариаций в каждой системе. Кровь, которая не попадает в систему ABO, считается редкой, и людям с такой кровью весьма трудно найти подходящего донора, если понадобится переливание.
Тем не менее есть редкая кровь, а есть очень редкая кровь. Самый необычный вид крови из известных сейчас — это Rh-нуль, или резус-нуль. Как следует из названия, такая кровь не содержит никаких антигенов в системе Rh. Нет ничего редкого в том, что человеку недостает определенных антигенов Rh. К примеру, люди без антигена Rh D обладают «отрицательной» кровью (т. е. A-, B- или O-). Тем не менее весьма необыкновенно совсем не иметь антигенов Rh. Так необычно, что ученые насчитали только около 40 лиц на планете с кровью нулевого резуса.
Что делает эту кровь интересной, так это то, что она совершенно превосходит кровь O-типа в смысле универсальности, поскольку даже O-отрицательная кровь не всегда совместима с другими типами редкой отрицательной крови. Rh-нуль, однако, совместима почти с любым типом крови. Дело в том, что при переливании наши тела, скорее всего, будут отказываться от любой крови, которая содержит антигены, которыми мы не располагаем. А поскольку резус-нулевая кровь имеет ноль антигенов A или B, ее можно переливать практически всем.
К сожалению, есть только девять доноров этой крови в мире, поэтому ее используют только в экстремальных ситуациях. Врачи называют эту кровь «золотой». Иногда они даже разыскивают анонимных доноров, чтобы попросить образец такой крови. Проблема в том, что если таким донорам самим понадобится кровь, им придется выбирать только из восьми оставшихся доноров, а это едва ли возможно.
Нужно немного поспать
Эти люди совсем не обязательно должны быть крепче нас и они не тренировались «держаться». У них может быть редкая генетическая мутация гена DEC2, которая приводит к тому, что им физиологически нужно меньше сна, чем среднестатистическому человеку.
Если обычные люди будут спать по шесть или меньше часов, они начнут испытывать негативные последствия почти сразу. Хроническое недосыпание может привести даже к проблемам со здоровьем, в том числе повышенному кровяному давлению и болезням сердца. У людей с мутацией гена DEC2 нет никаких проблем, связанных с уменьшением сна.
Эта генетическая аномалия встречается крайне редко — менее чем у 1% людей, которые утверждают, что им не нужно много спать. Вряд ли вы входите в их число.
По материалам listverse.com
Кто такие мутанты?
Люди часто рассматривают мутации в негативном свете. Однако без мутаций мы не имели бы богатого цветового зрения и прочих необходимых особенностей. Мутации — это изменения в вашем генетическом коде. ДНК — это генетический материал, используемый для кодирования определенных физических характеристик. Он сделан из четырех различных молекул, называемых основаниями. Эти базы представлены буквами A, T, C и G. Полный генетический код человека содержит миллиарды баз! Когда эти базовые последовательности изменяются, это называется мутацией.
Некоторые мутации могут вызвать такие пагубные состояния, как синдром Дауна или синдром Клинефельтера. Тем не менее многие мутации являются доброкачественными, а некоторые не имеют значения, потому что они существуют в областях ДНК, которые активно не используются. Например, голубые глаза возникли из-за изменения белка, ответственного за пигментацию глаз. Это один из примеров доброкачественной мутации.
Иногда, однако, будет происходить мутация, которая дает человеку преимущество и на самом деле выгодна. Кто такие мутанты (фото см. в статье)? В определенном смысле это все живые организмы.
Примеры мутаций
Самые прочные кости в мире
Например, ген LRP5 отвечает за плотность костей. Его мутация может привести к снижению плотности костной ткани или, наоборот, подарить вам несокрушимые кости. Одна семья в Коннектикуте (США), как оказалось, имеет мутации LRP5, которые дают их костям такую плотность, что те практически неразрушимы. Никто из них никогда не ломал кость. Увеличенная сила костей, в особенности позвоночника, черепа и таза, дает членам этой семьи самые прочные скелеты на Земле.
Хотели бы никогда не ломать себе кости?
Как спать по 4 часа в день
Другой ген, DEC2, отвечает за регулирование количества сна, необходимое нам каждую ночь, чтобы правильно функционировать. Большинству из нас нужно восемь часов сна или больше, но около 5% населения наслаждаются несколько иной «мутантной» версией. Испытания, проведенные на матери с дочкой, у которых были мутации, выявили способность спать всего 4-6 часов каждую ночь. Простые смертные начали испытывать негативные последствия уже через пару дней такого сна, но мутанты переносят это вполне нормально. Теперь ученые хотят скопировать эту мутацию для других людей, но пока у них это не сильно получается.
Иммунитет к электричеству
А некоторые люди из-за генной мутации вообще имеют иммунитет к электричеству. Обычный человек покрыт миллионами потовых желез, которые обычно прокладывают для электрошока удобный влажный путь прямо в нашу кожу. Однако один житель Сербии не имеет потовых или слюнных желез из-за редкого генетического заболевания. Это означает, что электричество не может проникнуть в его тело. Он может подзарядить телефон, чтобы почитать наш Telegram-чат, приготовить пищу, вскипятить воду и даже поджечь что-нибудь, пропуская электричество через свое тело, чем установил несколько рекордов и появился на нескольких телевизионных шоу.
За свою способность он получил прозвище «человек-батарейка»
Иммунитет к ядам
На протяжении сотен лет жители Сан-Антонио де лос Кобрес в Аргентине попивали горную воду, уровень мышьяка в которой превышает безопасный в 80 раз. Несмотря на чрезвычайное повседневное воздействие смертоносного металла, жители остаются абсолютно здоровыми. И все благодаря мутантному гену AS3MT, который прошел через тысячи лет естественного отбора. Он позволяет телу обрабатывать мышьяк, не позволяя ему накапливаться в опасных концентрациях, поэтому владельцы этих микроскопических мутантов могут поедать столько мышьяка, сколько им вздумается.
Ученые продолжают активно изучать мутации у человека и животных — одни считают, что это поможет вылечить многие болезни, а другие увлечены идеей создания «сверхчеловека». За счет мутаций он сможет быть невероятно сильным, быстро бегать, иметь иммунитет к электричеству и ядам и многое другое. Однако пока неизвестно ни одного случая, что эти мутации могут сосуществовать вместе. Все же реальная жизнь — это не кино или комикс про супергероев, чудес здесь не бывает. Хотя некоторые мутации и можно к ним отнести.