Квантовая реальность

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися  контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если  ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу. Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски)

Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон  летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Квантовая теория в деталях

Вернер Гейзенберг, среди прочих, интерпретировал эту математику так, что реальность не существует, пока не наблюдается. «Идея объективного реального мира, мельчайшие частицы которого существуют объективно в таком же смысле, в котором существуют камни или деревья, вне зависимости от того, наблюдаем мы за ними или нет, — невозможна», писал он. Джон Уилер также использовал вариант эксперимента с двойной щелью, чтобы заявить, что «ни одно элементарное квантовое явление не будет явлением, пока не станет зарегистрированным («наблюдаемым», «доподлинно записанным») явлением».

Но квантовая теория совершенно не дает никаких подсказок к тому, что считать «измерением». Она просто постулирует, что измерительное устройство должно быть классическим, не определяя, где лежит эта грань между классическим и квантовым, и оставляя открытой дверцу для тех, кто считает, что коллапс вызывает человеческое сознание. В прошлом мае Генри Стапп и его коллеги заявили, что эксперимент с двойной щелью и его современные варианты свидетельствуют о том, что «сознательный наблюдатель может быть необходимым», чтобы наделять смыслом квантовую сферу, и что в основе материального мира лежит трансперсональный разум.

Но эти эксперименты не являются эмпирическим доказательством таких утверждений. В эксперименте с двойной щелью, выполненном с одиночными фотонами, можно лишь проверить вероятностные предсказания математики. Если вероятности всплывают в процессе досылания десятков тысяч идентичных фотонов через двойную щель, теория утверждает, что волновая функция каждого фотона схлопнулась — благодаря нечетко определенному процессу под названием измерение. Вот и все.

Кроме того, существуют другие интерпретации эксперимента с двойной щелью. Взять, например, теорию де Бройля-Бома, в которой говорится, что реальность — это и волна, и частица. Фотон направляется к двойной щели с определенным положением в любой момент и проходит через одну щель или другую; следовательно,  у каждого фотона есть траектория. Она проходит через пилотную волну, которая проникает через обе щели, интерферирует и затем направляет фотон в место конструктивной интерференции.

В 1979 году Крис Дьюдни и его коллеги из Колледжа Брикбек в Лондоне смоделировали предсказание этой теории о траекториях частиц, которые пройдут через двойную щель. За последние десять лет экспериментаторы подтвердили, что такие траектории существуют, хоть и использовали спорную методику так называемых слабых измерений. Несмотря на спорность, эксперименты показали, что теория де Бройля-Бома все еще в состоянии объяснить поведение квантового мира.

Что более важно, этой теории не нужны наблюдатели, или измерения, или нематериальное сознание

Изучение квантовых частиц

Квантовая реальность

Квантовая физика не работает с большими частицами.

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект — вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Теория декогеренции в квантовой физике

На результат эксперимента влияет не сознание человека, а именно измерительный прибор, с помощью которого мы решили посмотреть, через какую щель прошел электрон.

Декогеренция, то есть возникновение классических свойств у элементарной частицы, появление определенных координат или значений спина, возникает при взаимодействии системы с окружающей средой в результате обмена информацией.

О декогеренции вы можете прочитать в отдельной статье.
 

Ведь квантовая физика говорит нам, что информационное поле это не абстрактное понятие, а реальность, которую можно изучать.

Нас пронизывают более тонкие миры со своим пространством и временем. А над ним стоит нелокальный квантовый источник, где вообще нет пространства и времени, а лишь чистая информация проявления материи. Именно оттуда в процессе декогеренции возникает привычный для нас классический мир.

Нелокальный квантовый источник это и есть то, что духовные учения, религии  называли Единым, Мировым Разумом, Богом. Сейчас его часто называют Мировым Компьютером. Теперь он оказался не абстракцией, а реальным фактом, квантовая физика изучает его.

А сознание человека можно сказать обособленная единица, частичка этого Мирового Разума. И эта частичка в состоянии менять рекогеренцию и декогеренцию с окружающими объектами, а значит влиять на них, менять что-то в них лишь  силой своего сознания.

Как это происходит, чем можно управлять в мире своим сознанием и что это дает?

Почему квантовая физика такая сложная

Все мы любим фокусы. Особенно те, во время которых фокусник может заставить шары “прыгать” между перевернутыми чашками. В квантовых системах, где свойства объекта, включая его местоположение, могут варьироваться в зависимости от того, как вы за ним наблюдаете, такие подвиги должны быть возможны без ловкости рук. Дело в том, что согласно квантовой теории, элементарная частица обретает определенное состояние лишь в момент наблюдения. В это сложно поверить, но в итоге ученым удалось экспериментально доказать, используя один-единственный фотон, что он существует в трех местах одновременно. Но как такое возможно?

Необходимо отметить, что успехами квантовой механики – с помощью которой можно точно описать поведение атомов и элементарных частиц – интересовался Альберт Эйнштейн. Однако гениальный ученый выступал против этой теории и высмеивал понятие, которое лежит в ее основе – запутанность. В квантовой механике запутанность означает, что свойства одной частицы могут немедленно влиять на свойства другой, независимо от расстояния между ними.

Квантовая реальность

Квантовая запутанность – это явление, при котором квантовые состояния двух или больше объектов оказываются взаимозависимыми

Впоследствии, серия тщательно разработанных экспериментов показала, что Эйнштейн ошибался: запутанность реальна и никакие другие теории не могут объяснить ее странные эффекты. И все же, несмотря на способность квантовой теории объяснять результаты экспериментальным путем, многие ученые признают, что квантовая физика настолько сложная, что познать ее едва ли удастся.

Однако запутанность – не единственное явление, которое отделяет квантовую теорию от классической. По мнению некоторых физиков, есть еще один шокирующий факт о квантовой реальности, который часто упускают из виду и который добавляет “волшебства” этой области теоретической физики. Как пишет издание The New Scientist, В 1967 году Саймон Кочен и Эрнст Спекер математически доказали, что даже для одного квантового объекта, где запутанность невозможна, значения, которые вы получаете при измерении его свойств, зависят от ситуации, в которой этот объект находится. Таким образом, ценность свойства А зависит от того, решили ли вы измерить его с помощью свойства В или с помощью свойства С. Говоря простыми словами, не существует реальности, независимой от выбора измерения.

Что изучает квантовая физика?

Квантовая физика описывает свойства материи на уровне микроявлений, исследуя законы движения микрообъектов (квантовых объектов).

Предмет изучения квантовой физики составляют квантовые объекты, обладающие размерами 10−8 см и меньше. Это:

  • молекулы,
  • атомы,
  • атомные ядра,
  • элементарные частицы.

Главные характеристики микрообъектов — масса покоя и электрический заряд. Масса одного электрона (me) равна 9,1 · 10−28 г.

Для сравнения – масса мюона равна 207 me, нейтрона – 1839 me, протона 1836 me.

Некоторые частицы вообще не имеют массы покоя (нейтрино, фотон). Их масса составляет 0 me.

Электрический заряд любого микрообъекта кратен величине заряда электрона, равного 1,6 · 10−19 Кл. Наряду с заряженными существуют нейтральные микрообъекты, заряд которых равен нулю.

Квантовая реальность

Фото 2. Квантовая физика заставила пересмотреть традиционные взгляды на понятия волны, поля и частицы

Электрический заряд сложного микрообъекта равен алгебраической сумме зарядов составляющих его частиц.

К числу свойств микрообъектов относится спин (в дословном переводе с английского — «вращаться»).

Его принято интерпретировать как не зависящий от внешних условий момент импульса квантового объекта.

Спину сложно подобрать адекватный образ в реальном мире. Его нельзя представлять вращающимся волчком из-за его квантовой природы. Классическая физика описать этот объект не способна.

Присутствие спина влияет на поведение микрообъектов.

Наличие спина вносит существенные особенности в поведение объектов микромира, большая часть которых – нестабильных объектов — самопроизвольно распадается, превращаясь в другие квантовые объекты.

Стабильные микрообъекты, к которым относят нейтрино, электроны, фотоны, протоны, а также атомы и молекулы, способны распадаться лишь под воздействием мощной энергии.

Квантовая физика полностью вбирает в себя классическую физику, рассматривая ее своим предельным случаем.

Фактически квантовая физика и является – в широком смысле – современной физикой.

То, что описывает квантовая физика в микромире, воспринять чувствами невозможно. Из-за этого многие положения квантовой физики трудно представимы, в отличие от объектов, описываемых классической физикой.

Несмотря на это новые теории позволили изменить наши представления о волнах и частицах, о динамическом и вероятностном описании, о непрерывном и дискретном.

Квантовая физика – это не просто новомодная теория.

Это теория, которая сумела предсказать и объяснить невероятное количество явлений – от процессов, протекающих в атомных ядрах, до макроскопических эффектов в космическом пространстве.

Квантовая физика – в отличие от физики классической – изучает материю на фундаментальном уровне, давая интерпретации явлениям окружающей действительности, которые традиционная физика дать не способна (например, почему атомы сохраняют устойчивость или действительно ли элементарные частицы являются элементарными).

Квантовая теория дает нам возможность описывать мир более точно, нежели это было принято до ее возникновения.

Квантовая физика является вероятностной

Квантовая реальность

Одной из основ квантовой физики является ее вероятностность.

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция — это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии — состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном — зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Нелокальность исследований

Квантовая реальность

Назвать квантовую физику локальной язык не поворачивается.

Последний великий вклад Эйнштейна в физику не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х — они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Термины

Помимо обычных в физике используют и специальные слова, называющиеся терминами. Это «энергия» (в физике это мера разных форм взаимодействия и движения материи, а также перехода из одной в другую), «сила» (мера интенсивности влияния других тел и полей на какое-либо тело) и многие другие. Часть из них постепенно вошла в разговорную речь.

Например, используя слово «энергия» в повседневной жизни применительно к человеку, мы можем оценивать последствия его действий, но энергия в физике — это мера изучения множеством разных способов.

Квантовая реальность

Все тела в физике называют физическими. Они имеют объем и форму. Состоят из веществ, которые, в свою очередь, являются одними из видов материи — это все существующее во Вселенной.

Приборы для измерений

Чтобы проводить опыты, нужны приборы. Простейшими из них являются линейка, цилиндр, рулетка и другие. С развитием науки совершенствуются, усложняются и появляются новые приборы: вольтметры, термометры, секундомеры и другие.

В основном приборы имеют шкалу, то есть штриховые деления, на которых написаны значения. Перед измерением определяют цену деления:

  • берут два штриха шкалы со значениями;
  • из большего вычитают меньшее, а полученное число делят на число делений, которые находятся между.

Например, два штриха со значениями «двадцать» и «тридцать», расстояние между которыми разделено на десять промежутков. В этом случае цена деления будет равна единице.