Сетевой коммутатор

Для корпоративной сети

На самом деле на этот вопрос нельзя ответить простым “да” или “нет”. Использование управляемых коммутаторов или неуправляемых коммутаторов зависит от размера сети предприятия, от требуемых функций и сложности сети. Множество небольших корпоративных сетей не имеют управляемых коммутаторов, потому что им нужны только основные функции коммутатора Ethernet. В то время как для сложной корпоративной сети или крупных дата-центров обработки данных тысячи пользователей одновременно используют Интернет. Управляемые коммутаторы могут изолировать трафик данных на основе различных групп, таких как: пользователи, гости, резервные копии, управление и серверы. Это не только дает менеджерам лучший способ контроля над трафиком данных, но также обеспечивает надежную защиту всей сети.

как выбор управляемого или неуправляемого коммутатора

Что такое коммутатор, а также как работает коммутатор и для чего он предназначен?

Итак, коммутатор применяется для того, чтобы создать небольшую локальную сеть. У них есть свои особенности. Коммутаторы способны анализировать информацию и самостоятельно отправлять их непосредственно к получателям. Это имеет свою пользу. При таком распределении информации повышается производительность и уменьшается имеющаяся нагрузка на локальную сеть.

В отличие от концентраторов, свитч не распределяет информацию между всеми участниками локальной сети. Еще одно преимущество – это повышение уровня безопасности во время передачи информационных данных. Это происходит из-за того, что данные поступают непосредственно к получателю, а другие пользователи не могут получать эту информацию.

Работа свитча построена на принципе канального уровня модели OSI. Такой принцип позволяет коммутаторам объединить узлы по МАС-адресу. Каждый такой адрес имеет индивидуальный уникальный номер. По этому уникальному адресу определяется каждый отдельный порт. Во время своей работы свитч запоминает все МАС-адреса, которые находятся в пределах определенной локальной сети. Таблица из МАС-адресов будет заполняться до того момента, пока на каждый из сетевой порт не поступит информация.

Сетевой коммутатор

Потом все сетевые порты получат свой МАС-адрес. А это значит, что информация найдет своего адресата по уникальному МАС-адресу и не смогут перейти ко всем участникам локальной сети.

Если свитч перезагрузится, то он обнулит и снова запишет всю необходимую для его работы информацию.

Все коммутаторы имеют свой режим работы. Этот режим отличается временем ожидания и уровнем надежности передаваемой информации.

Существуют следующие режимы:

— сквозной режим. Такой режим работы коммутатора отличается очень высокой скоростью, с которой передается информация. Данные не проверяются и не анализируются. Вследствие этого ускоряется процесс передачи информации. Но иногда при этом случаются сбои и ошибки в полученном пакете данных.

— промежуточный режим. При этом режиме работы применяется промежуточное хранение и пересылка информации. Свитч сначала считывает и распознает информацию при получении сигнала. Потом анализирует его на возможное наличие различных ошибок, искажений или помех. Следующим шагом является распознавание специального адреса получателя и только потом передает имеющиеся данные к порту, который сохранился в памяти устройства.

— безфрагментарный режим. Такой режим работы имеет в себе черты сквозного и промежуточного режимов.
Итак, что такое коммутатор мы с вами узнали, а теперь давайте ознакомимся с видами коммутаторами.
Существует всего 2 вида коммутаторов со своими отличительными чертами:

1. Управляемый коммутатор. Такое устройство имеет большую функциональность. Она может изменяться и настраиваться в соответствии с требованиями и запросами каждой отдельной локальной сети. Управление коммутатором происходит при помощи встроенного SNMP протокола или при применении последовательной консоли.

Управляемые коммутаторы разделяются еще на 2 вида:

1) Смарт-свитч. У них много функций. При этом они дорого стоят. У таких коммутаторов очень сложное управление.

2) Промышленный коммутатор. Это коммутаторы полностью управляются. Обладают широким спектром различных возможностей и имеют разные функции.

2. Неуправляемый коммутатор. Такие устройства часто применяются на маленьких промышленных предприятиях, офисах и домашних сетях. При использовании таких свитчей компьютер может взаимодействовать с другими компьютерами и устройствами локальной сети. Такой неуправляемый коммутатор не нужно настраивать. Для его управления не требуется специальное программное обеспечение или установка дополнительных приложений. Такой коммутатор достаточно просто установить и пользоваться им.

Для начала работы необходимо подключить только кабель. С помощью неуправляемых коммутаторов создается малая или средняя локальная сеть.

Свитчи созданы после концентраторов, то есть являются их последователями. У коммутаторов более широкие функции и сетевые особенности. При этом коммутаторы самые распространенные устройства, использующиеся при создании локальных сетей.

Таблицы коммутации

В простом виде таблица коммутации (ТК) состоит из 2-х столбцов. Столбец №1 это порт коммутатора, а 2-ой это МАК-адрес ПК, который подключен к данному порту.

Сетевой коммутатор

В действительности, таблица выглядит намного сложнее, но чтобы понять принцип действия коммутатора, хватит этих 2-х полей. 

Алгоритм обратного обучения

Чтобы узнать, как коммутатор узнает mac адреса компьютеров, которые подключены к его портам, применяется алгоритм обратного обучения.

Например, есть коммутатор, у него 8 портов. Его только что включили и не знает ничего про ПК, подключенные к нему. Ячейки в таблице коммутации пока пустые, коммутатор принимает все кадры, которые приходят на его порты и проводит анализ заголовка канального уровня. Из заголовка он извлекает адрес отправителя. Коммутатор определяет, что к порту №3 подключен ПК с таким же mac-адресом. И следовательно, записывает этот mac-адрес в ТК.

Сетевой коммутатор

И так далее, пока вся таблица коммутации не заполнится и коммутатор не будет знать МАК-адреса всех ПК, подключенные к его портам.

Сетевой мост

Чтобы отправить кадры внутри коммутаторов, применяется алгоритм прозрачного моста. Мост — был до коммутаторов, это спец устройство, используется для объединения нескольких сетей классического ethernet. Если в сети классического интернета будет подключено большое количество ПК, то возникнут коллизии и данные будут передаваться с низкой скоростью. 

Мосты нужны для того, чтобы разделить крупные сети на несколько маленьких, внутри которых намного меньше возникало коллизий и информация передавались с большей скоростью. Мост был подсоединен к 2-м или нескольким сегментам классического изернет, принимал все кадры, которые передаются, но передавал их в другую сеть только в том случае, есть они предназначались для компьютера из другой сети. 

Сетевой коммутатор

Есть несколько видов мостов, но для коммутаторов выбрали режим работы прозрачного моста. Прозрачный мост, он незаметен для сетевых устройств. У него нет своего макадреса и ему не нужна настройка.  Вы можете подключать к нему ПК и информация будет немедленно передаваться в отличие от коммутатора. Маршрутизатору нужны конфигурации для каждого порта. В маршрутизаторах необходимо прописать ip адрес, и настроить таблицу маршрутизации. 

Алгоритм прозрачного моста

Например, таблица коммутации заполнена и коммутатор знает мак адреса компьютеров, подключённые к его портам. Коммутатор принимает кадры, проводит анализ заголовка канального уровня и извлекает оттуда адрес получателя. Он ищет этот мак-адрес в таблице коммутации, в нашем случае на картинке ниже, компьютер с таким мак адресом подключен к порту № 2. 

Сетевой коммутатор

Следовательно, кадр передается на порт №2, где и есть получатель, а не на все порты, как это делает концентратор. 

Сетевой коммутатор

Если пришел кадр с адресом получателя, а этого адреса нет в таблице коммутации. То коммутатор работает по такой же схеме, как и концентратор.

Сетевой коммутатор

Передает кадр на все порты, кроме того порта откуда этот кадр поступил, надеясь, что к какому-нибудь из этих портов подключен компьютер получателя, просто по каким-то причинам он еще не передавал данные и поэтому его мак адреса нет в ТК. 

Сетевой коммутатор

Каким может быть коммутатор в автомобиле?

Современные
коммутаторы эффективны и надежны благодаря
микропроцессорам. Сейчас в магазинах продают разные модели. Все коммутаторы
можно поделить на:

  1. Транзисторные. Имеют контакты, которые могут обгореть или просто
    износиться. Это значит, что срок службы у них небольшой.
  2. Тиристорные. Похожи на транзисторные, но имеют одно отличие —
    высокое напряжение возникает в конденсаторе. Когда система активируется,
    конденсатор подключается к катушечной обмотке. При следующем разряжении возникает
    искра.
  3. Гибридные. Здесь есть кулачковый трамблер. Электронная часть
    включает в себя коммутатор и катушку. Это гибрид электроники и механики. За
    счет электронных элементов этот узел надёжнее и экономичнее. Датчики здесь
    заменены кулачками, подсоединяются они просто. Конструкция удобна — ведь
    когда свитч выходит из строя, можно переключиться на старую катушку. Потом
    запускается кулачковое зажигание.
  4. Бесконтактные — самые эффективные устройства. Их параметры намного
    выше показателей коммутаторов другого типа. С началом применения
    электроники производители начали отказываться от контактов — сигналы стали
    передаваться от датчика Холла.

Датчики
сыграли роль в улучшении процесса образования искры — перебои прекратились, погрешность
воспламенения горючего в правом цилиндре уменьшилась. Проблема зависимости угла
опережения от частоты оборотов двигателя осталась, но и она была решена при
помощи микроконтроллерной системы. Устройства, в которые она интегрирована,
получают сигнал с датчика на вход Х1. Здесь его обработкой занимается
микроконтроллер, определяющий момент активации и деактивации катушки.

Кстати, на машинах российского производства
бесконтактники впервые были установлены на ВАЗ 2108.

Доступ к среде

Чтобы избежать коллизий и информация передавались успешно в сетях, где применяется разделяемая среда необходимо использовать, какой-то метод управления доступом к среде. Этот метод должен сделать так, чтобы в одно и то же время данные по разделяемой среде передавал только один компьютер. 

В классическом Ethernet используется метод доступа к разделяемой среде CSMA/CD. Сокращение от английского Carrier Sense Multiple Access with Collision Detection. По-русски множественный доступ с прослушиванием несущей частоты и обнаружением коллизий. 

Множественный доступ означает, что у нас есть какая-то разделяемая среда, которую используют несколько компьютеров. 

Прослушивание несущей частоты

Для того, чтобы избежать коллизий, ПК передают информацию только тогда, когда среда свободна. И прослушивание это и есть способ определить свободна среда в данный момент времени или сейчас, какой-то другой ПК передает данные, через разделяемую среду. 

Несущая частота это основная гармоника сигнала, применяемая для передачи информации на физическом уровне. 

Например, в Ethernet при манчестерском кодировании происходит смена сигнала в середине каждого такта. Также дополнительно может происходить смена сигнала в конце каждого такта. Поэтому, все компьютеры смотрят изменяется ли сигнал с заданной частотой. И если сигнал изменяется, то значит, какой-то другой компьютер передает данные, поэтому сейчас передавать данные нельзя. Если же в сети нет несущей частоты, то можно передавать данные не опасаясь, что помешаешь какому-то другому устройству. Также возможен вариант, когда в сети есть какой-то сигнал. но в нем нет явно выраженной несущей частоты. Это говорит о том, что это не сигнал передачи данных, а просто помехи.  

Обнаружение коллизий

Если два компьютера начали передавать данные одновременно, то происходит коллизия. Как в Ethernet компьютера обнаруживают коллизию? Для этого они передают и принимают данные одновременно и сравнивают эти данные между собой. Если тот сигнал, который компьютер передает в сеть отличается от того, который он принимает, это значит произошла коллизия. Входной сигнал меняется из-за того, что какой-то другой компьютер передает свой сигнал в сеть. 

В Ethernet если компьютер обнаружил коллизию, он останавливает передачу и передает в сеть Jam последовательность. Это сигнал, который существенным образом искажает все данные, которые передаются по сети, усиливает коллизию, чтобы все компьютеры, которые подключены к разделяемой среде, гарантированно поняли, что коллизия произошла и остановили передачу. 

Устройство и принцип работы

Первые коммутаторы были крайне примитивны. Простая схема из транзисторов регулировалась при помощи электрического импульса. В таком виде устройство просуществовало недолго. Наступила эра высоких технологий, благодаря которой стали применяться более эффективные инновационные решения.

На машинах, собираемых в РФ, стимулятор искры был впервые использован на автомобиле Ваз-2108. Устройство относилось к серии 36.3734 тоже родного производства. В дальнейшем стали применяться более модернизированные коммутаторы с различным исполнением конструктивно-технической схемы. Однако комбинированная или составная сборочная технология всегда оставалась для российских микросхем неизменной. И плюс её в том, что она ремонтопригодна, в отличие от тех же зарубежных аналогов.

Сегодня коммутатор — это совокупность нескольких элементов: свечи, транзисторы, датчики. Он может использоваться в гибридном или тиристорном зажигании. Электрические импульсы управляются автоматически, что даёт целый ряд практических преимуществ:

  • отсутствие перебоев на максимальных скоростях;
  • повышение надёжности работы блока;
  • возможность увеличения объёма цилиндров мотора.

А когда внедрили элемент Холла, и коммутатор начал управлять сразу несколькими преобразователями, преимущества только увеличились. Настолько, что на каждой отдельной свече стали использовать тандем «катушка+коммутатор». Вот чего конкретно удалось достичь:

  • более сильной и надёжной стала искра в системе зажигания;
  • исчезли потери мощности в трамблёре;
  • улучшился холостой ход;
  • снизился расход горючего;
  • стабилизировался пуск на холодный двигатель.

Принцип работы коммутатора можно представить себе так. Сначала система контролирует положение коленвала двигателя. Затем индуктивным датчиком Холла, входящим в конструкцию распределителя, снимаются показания с положения поршней в цилиндрах. Он же и подаёт на коммутатор импульс. Сигнал усиливается до 12 вольт и поступает на катушку. За счёт этого уменьшается сила тока, и повышается напряжение.

Классификация маршрутизаторов

Существует несколько классификаций роутеров. Основными являются разделения по области применения и способу подключения.

Причём, подключаются по-разному и сами маршрутизаторы, и устройства, которые с их помощью выходят в Интернет.

По области применения

В зависимости от применения роутеры делятся на классы:

Верхний — включающие самые высокопроизводительные модели, объединяющие сети крупных организаций и предприятий. Маршрутизаторами данного типа поддерживаются различные интерфейсы и протоколы, включая нестандартные. В каждом устройстве может быть до 50 портов и для глобальных, и для локальных сетей;

Маршрутизатор верхнего класса

  • Средний — служащий для формирования сравнительно небольших сетевых объединений для предприятий размером поменьше. В стандартной конфигурации роутеры могут включать до 8 портов локальной сети и до 3 портов – глобальной;
  • Нижний — предназначенный для локальных сетей отдельных офисов или домашнего использования. В основном включают по 1–2 порта глобальной сети и до 4 – локальной.

По способу подключения

Подключаться к Интернету или к крупной сети (например, предприятия) устройство может проводным или беспроводным способом.

То же относится и к разведению сети по другим устройствам, которое осуществляется при помощи оптоволоконного кабеля или через WiFi.

Чаще всего в домашних условиях используются варианты с проводным подключением сети к маршрутизатору и беспроводное – для отдельных ПК.

Проводной маршрутизатор

Проводные роутеры, предусматривающие подведение к каждому отдельному устройству, являются оптимальным выбором для сети, состоящей из 2–8 стационарных компьютеров или ноутбуков, которые, в основном, находятся на одном и том же месте.

Таким способом легко настраивается и доступ к данным с одного устройства на другое – например, с ПК в одном помещении к принтеру или запоминающему устройству в другом.

Проводной маршрутизатор

Wi-Fi роутер

Преимуществом беспроводного роутера является не только возможность передавать данные без использования кабелей, но и с ними.

Большинство бытовых устройств поддерживают оба вида подключения, тогда как многие настольные ПК подключаются только проводным способом.

Беспроводные маршрутизаторы

В возможности обычного Wi-Fi-роутера входит объединение всех устройств в квартире или нескольких офисных помещениях, включая компьютеры, телефоны, принтеры или Smart-телевизоры в общую сеть и соединение их с Интернетом.

Для этого достаточно всего одной линии доступа к глобальной сети с достаточной скоростью передачи данных.

При этом, например, канала на 1–5 Мбит/с будет явно недостаточно для нормальной работы в сети нескольких устройств.

С помощью маршрутизатора можно обеспечить и простое взаимодействие между техникой, без доступа к Интернету. В этом случае беспроводное подключение тоже будет работать, но поможет организовать обмен информацией только внутри локальной сети.

Типы коммутаторов

Из всего разнообразия данного вида приборов для авто и мототехники предназначены следующие:

  • устройство, которое имеет высоковольтный встроенный генератор – DC CDI;
  • коммутатор, что работает только в присутствии дополнительного источника высокого напряжения – AC CDI;
  • катушка-коммутатор.

Коммутаторы DC-типа являются самыми применяемыми из-за легкого подключения, они имеют на корпусе лишь четыре контакта: датчик Холла, минус, плюс, катушка зажигания.

Данные приборы имеют широкий модельный ряд:

  • без ограничителя максимального числа оборотов или с ним;
  • с возможностью изменять фазы опережения зажигания;
  • для различных нужд — наличие дополнительных контактных групп.

Коммутаторы АС-типа отличаются от первых тем, что им не нужно постоянное наличие напряжения, и подключаются они несколько сложнее. Также они имеют очень маленькие размеры и, следовательно, более простую конструкцию. В силу этого они не обладают ограничителем максимального числа оборотов, что снижает безопасность использования техники.

Коммутаторы-катушки представляют собой самый интересный, слабоизученный и малораспространенный вид. Они соединяют в себе катушку зажигания и коммутирующий элемент, а также не оснащены датчиком Холла.

Принцип их действия заключается в прерывании тока, который протекает через высоковольтный трансформатор с низковольтной намоткой-катушкой. Само прерывание осуществляется контактным выключателем, что приводится в действие с помощью вала распределителя зажигания.

Система с механическим прерывателем имеет следующие недостатки:

  1. Из-за слишком высокого тока, протекающего в первичной обмотке катушки, в прерывателе часто вырабатывается искра, которая приводит к порче контактов: они оплавляются и обгорают.
  2. В холодное и сырое время года контакты подвергаются электрохимической эрозии.
  3. Высокий ток в контактах прерывателя приводит к тому, что продолжительность разряда искры зажигания является кратковременной, это приводит к некачественному поджиганию топлива и нестабильной работе двигателя на низких оборотах. Следовательно, требуются затраты на обогащенную смесь.

Устранение этих недостатков стало возможным с появлением высоковольтных транзисторов высокой мощности и созданием бесконтактных систем электронного зажигания.

Некоторые водители пытаются улучшить технические характеристики транспортного средства путем замены контактной системы зажигания бесконтактной от новой модели. Это затратно и трудоемко, ведь требуется поменять систему зажигания полностью и приобрести электронный коммутатор. Кроме того, не всегда удается найти подходящий к старому новый вариант коммутации зажигания.

Несмотря на это, даже если между катушкой зажигания и контактным прерывателем подключить простой коммутатор на мощном транзисторе, можно заметно повысить качество системы контактного зажигания автомобиля:

  • перестанут оплавляться контакты прерывателя из-за уменьшения тока;
  • продолжительность заряда искры увеличится примерно вдвое, что вызовет лучшее поджигание горючего;
  • систему всегда можно вернуть к первоначальному варианту простой перекоммутацией провода в случае поломки коммутатора на транзисторе.

Что такое коммутатор в машине?

Этим
термином называют устройство, отвечающее за появление искры. Искра возникает в
блоке зажигания, а коммутатор в автомобиле — блок, координирующий этот процесс.
Система зажигания делится на две составляющие — контрольный блок и блок, где
происходит искровой разряд. Управляющая система контролирует момент появления
искры, а исполняющий блок занимается ее образованием.

Прежде
на автомобилях была система розжига горючего с батарейным зажиганием. В ее
основе лежал принцип самоиндукции. Такая система работала долго — до появления
принципиально иной элементной базы. У неё несложная транзисторная схема.
Регулирование производится при помощи тока, проходящего по бобине. Основной
принцип остался неизменным — коммутаторы по-прежнему работают на электромагнитной
индукции.

Для чего нужен, где находится и как выглядит

Как и было сказано, коммутатор нужен для езды на бензине низко октановых марок. Стоит такое горючее значительно дешевле премиум-сортов. При этом отдача мотора по-прежнему остаётся на высоком уровне за счёт лучшего воспламенения смеси воздуха и топлива. Таким образом, коммутатор — это устройство, содействующее появлению в блоке зажигания продуктивной искры. Его можно считать микрокомпьютером, стимулирующим преобразователь. Естественно, коммутатор должен опираться на какие-то данные. В нашем случае, это сигналы датчика синхронизации.

Конструктивно элемент может совмещаться с ЭБУ. В этом случае он располагается на трамблёре (Ваз 2106, 2107) или рядом с преобразователем — на ЗИЛ ТК102У. Не исключение — вариант нахождения на отдельной металлической площадке. Как правило, это или крыло автомобиля, или перегородка под капотом (Ford). А на немецких Audi коммутатор установлен в моторном отсеке под лобовым стеклом. Для него предусмотрен защитный кожух из влагонепроницаемого материала.

Признаки неисправности коммутатора

Потеря системой зажигания искры — один из главных симптомов отсутствия исправности коммутатора. Естественно, это сопровождается трудным запуском двигателя, перебоями в его работе. Однако специалисты предупреждают — торопиться с заменой элемента не стоит, ведь подобные признаки присущи также и при других неполадках. К примеру, это же происходит при обрыве ремня ГРМ, повреждении трамблёра или катушки зажигания, слабых контактах соединений проводки и т. д.

Одним словом, проверять коммутатор нужно грамотно. Но как это сделать без квалификации, ведь устройство имеет сложную конструкцию. Есть несколько практичных способов. Первый, это не заморачиваться и установить новый коммутатор. Если проблема исчезнет, значит, всё отлично. Второй способ подразумевает использование контрольной лампы на 12 вольт и стандартного набора ключей.

Далее по инструкции:

  • обесточить аккумулятор;
  • снять управляющий провод «К» с катушки зажигания — он часто бывает выкрашен в коричневый или красный цвет и проложен к главному зажиму коммутатора;
  • на его место установить один конец контрольной лампы, второй — соединить с проводом «К»;
  • подсоединить внешнее питание 12 вольт — аккумулятор;
  • запустить двигатель.

Если лампа начнёт мигать — коммутатор исправен. Обратная ситуация, когда индикатор не подаёт никаких рабочих признаков, укажет на проблемы с устройством. Вряд ли оно полностью испортилось, тогда двигатель не завёлся бы с первого раза.

Признаки неисправности коммутатора точнее можно увидеть на профессиональном оборудовании — специальном стенде. Это даёт возможность не только определить факт работоспособности устройства, но и рассчитать длительность импульсов. Кроме того, специалисты отдельно измеряют напряжение на выходе датчика Холла — норма не более 0,4 В. Также замыкается первый и второй выводы коммутатора при включённом зажигании, чтобы протестировать наличие искры.

Буфер памяти

Для временного хранения фреймов и последующей их отправки по нужному адресу коммутатор может использовать буферизацию.
Буферизация может быть также использована в том случае, когда порт пункта назначения занят.
Буфером называется область памяти, в которой коммутатор хранит передаваемые данные.

Буфер памяти может использовать два метода хранения и отправки фреймов: буферизация по портам и буферизация с общей памятью.
При буферизации по портам пакеты хранятся в очередях (queue), которые связаны с отдельными входными портами. Пакет передаётся на выходной порт только тогда, когда все фреймы, находившиеся впереди него в очереди, были успешно переданы. При этом возможна ситуация, когда один фрейм задерживает всю очередь из-за занятости порта его пункта назначения. Эта задержка может происходить даже в том случае, когда остальные фреймы могут быть переданы на открытые порты их пунктов назначения.

При буферизации в общей памяти все фреймы хранятся в общем буфере памяти, который используется всеми портами коммутатора. Количество памяти, отводимой порту, определяется требуемым ему количеством. Такой метод называется динамическим распределением буферной памяти. После этого фреймы, находившиеся в буфере, динамически распределяются по выходным портам. Это позволяет получить фрейм на одном порте и отправить его с другого порта, не устанавливая его в очередь.

Коммутатор поддерживает карту портов, в которые требуется отправить фреймы. Очистка этой карты происходит только после того, как фрейм успешно отправлен.

Поскольку память буфера является общей, размер фрейма ограничивается всем размером буфера, а не долей, предназначенной для конкретного порта

Это означает, что крупные фреймы могут быть переданы с меньшими потерями, что особенно важно при асимметричной коммутации, то есть, когда порт с шириной полосы пропускания 100 Мбит/с должен отправлять пакеты на порт 10 Мбит/с.

Режимы коммутации

См. также: коммутация

Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.

  1. С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию в кадре, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него кадр.
  2. Сквозной (cut-through). Коммутатор считывает в кадре только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.
  3. Бесфрагментный (fragment-free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (первые 64 байта кадра анализируются на наличие ошибки и при её отсутствии кадр обрабатывается в сквозном режиме).

Задержка, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него, и вместе с ним определяет общую задержку коммутатора.