Каналы связи

Модели канала связи

Канал связи описывается математической моделью, задание которой сводится к определению математических моделей выходного и входного S2{\displaystyle S_{2}} и S1{\displaystyle S_{1}}, а также установлению связи между ними, характеризующейся оператором L{\displaystyle L}, то есть

S2=L(S1){\displaystyle S_{2}=L(S_{1})}.

По типу замирания сигнала модели канала связи делятся на гауссовские, релеевские, райссовские и с замираниями, моделируемые с помощью распределения Накагами.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал S2{\displaystyle S_{2}} является детерминированным, то есть

S2(t)=γ S1(t−τ){\displaystyle S_{2}(t)=\gamma ~S_{1}(t-\tau )}

где γ — константа, определяющая коэффициент передачи, τ — постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что τ{\displaystyle \tau } является случайной величиной. Например, если входной сигнал S1(t){\displaystyle S_{1}(t)} является узкополосным, то сигнал S2(t){\displaystyle S_{2}(t)} на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

S2(t)=γ(cos(θ)u(t)−sin(θ)H(u(t))+n(t){\displaystyle S_{2}(t)=\gamma (cos(\theta )u(t)-sin(\theta )H(u(t))+n(t)},

где учтено, что входной сигнал S1(t){\displaystyle S_{1}(t)} может быть представлен в виде:

S1(t)=cos(θ)u(t)−sin(θ)H(u(t)){\displaystyle S_{1}(t)=cos(\theta )u(t)-sin(\theta )H(u(t))},

где H(){\displaystyle H()} — преобразование Гильберта, θ{\displaystyle \theta } — случайная фаза, распределение которой считается обычно равномерным на интервале

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, то есть например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных.

Также существуют модели дискретно-непрерывных каналов связи

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы.

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала — непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала — дискретные сигналы),
  • непрерывно-дискретные (на входе канала — непрерывные сигналы, а на выходе — дискретные сигналы),
  • дискретно-непрерывные (на входе канала — дискретные сигналы, а на выходе — непрерывные сигналы).

Каналы могут быть линейными и нелинейными, временными и пространственно-временными. Возможна классификация каналов связи по диапазону частот.

Литература

  • Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — 432 с. — ISBN 5-256-01288-6.
  • Радиотехника / Под ред. Мазора Ю.Л., Мачусского Е.А., Правды В.И.. — Энциклопедия. — М.: ИД «Додэка-XXI», 2002. — С. 488. — 944 с. — ISBN 5-94120-012-9.
  • Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. — М.: Радио и связь, 2000. — 800 с. — ISBN 5-256-01434-X.
  • Скляр Б. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. — 2-е изд. — М.: Вильямс, 2007. — 1104 с. — ISBN 0-13-084788-7.
  • Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. — М.: Радио и связь, 2000. — 552 с. — ISBN 5-256-01444-7.

Модели канала связи

Канал связи описывается математической моделью, задание которой сводится к определению математических моделей выходного и входного S2{\displaystyle S_{2}} и S1{\displaystyle S_{1}}, а также установлению связи между ними, характеризующейся оператором L{\displaystyle L}, то есть

S2=L(S1){\displaystyle S_{2}=L(S_{1})}.

По типу замирания сигнала модели канала связи делятся на гауссовские, релеевские, райссовские и с замираниями, моделируемые с помощью распределения Накагами.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал S2{\displaystyle S_{2}} является детерминированным, то есть

S2(t)=γ S1(t−τ){\displaystyle S_{2}(t)=\gamma ~S_{1}(t-\tau )}

где γ — константа, определяющая коэффициент передачи, τ — постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что τ{\displaystyle \tau } является случайной величиной. Например, если входной сигнал S1(t){\displaystyle S_{1}(t)} является узкополосным, то сигнал S2(t){\displaystyle S_{2}(t)} на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

S2(t)=γ(cos(θ)u(t)−sin(θ)H(u(t))+n(t){\displaystyle S_{2}(t)=\gamma (cos(\theta )u(t)-sin(\theta )H(u(t))+n(t)},

где учтено, что входной сигнал S1(t){\displaystyle S_{1}(t)} может быть представлен в виде:

S1(t)=cos(θ)u(t)−sin(θ)H(u(t)){\displaystyle S_{1}(t)=cos(\theta )u(t)-sin(\theta )H(u(t))},

где H(){\displaystyle H()} — преобразование Гильберта, θ{\displaystyle \theta } — случайная фаза, распределение которой считается обычно равномерным на интервале

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, то есть например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных.

Также существуют модели дискретно-непрерывных каналов связи

Классификация

Сегодня вся информация распространяется посредством колебаний – единственный способ существования материи, воспринимаемый человеком, приборами. Тесла считал мироздание сотканным из вибраций. Сложно ошибиться, назвав каналы связи колебательными. Классификация тесно касается исследований гармонических процессов. Фурье показал – волна любой формы представима суммой элементарных колебаний.

По природе волн

Напрашивается первая классификация:

  1. Механические:
    • Акустические. Канал использует сарафанное радио.
    • Твердотельные. Активно эксплуатируется жестяным телефоном (tin can).
    • Жидкие среды. Первая рабочая модель Белла заставляла посредством воды вибрировать омический преобразователь.

  2. Электромагнитные:
    • Инфракрасные. Знакомо строителям, постоянно ищущим методики сберечь тепло здания.
    • Световые. Первый семафор использовал визуально различимые сигналы.
    • Ультрафиолетовые. Загар лучше всего покажет наличие невидимого излучения Солнца.
    • Радиочастоты. Доносят информацию миллионам телезрителей.
    • Рентгеновское излучение. Позволяет проверить целостность скелета.
    • Радиация. Жители Чернобыля горько сожалеют об отсутствии счётчиков Гейгера.

Мысли также могут быть периодичными. Установлением природы возникающих сигналов сегодня занимается наука. Приведённые выше примеры составляют малую толику достижений человеческой цивилизации. Проявив минимум умственного напряжения, читатели поймут: электромагнитные, механические волны распространяются повсеместно. Постепенно угасая. Электромагнитным обычно удаётся проникнуть дальше. Естественным ограничителем механических выступает окружающий планеты вакуум.

Электромагнитное излучение принято классифицировать согласно типу модуляции несущей:

  1. Амплитудная.
  2. Частотная.
  3. Фазовая.
  4. Однополосная.
  5. Кодово-импульсная.
  6. Манипуляция:
  • Частоты.
  • Фазы.
  • Амплитуды.

Каналы связи

По форме волн

Человек изначально пытался использовать электричество. Задача передачи информации требовала менять форму сигналов:

  1. Аналоговые, изменяющиеся плавно.
  2. Импульсные, отличающиеся короткой длительностью.
  3. Дискретные искусственно разорваны. Цифровой сигнал отличается нормированием уровней символов 0, 1.

Требования минимизации стоимости, энергозатрат постоянно рождают методики улучшения качества. Сегодня высшим достижением человеческой мысли считают цифровой сигнал, ставший отдельной отраслью сегмента передачи информации. Сказанное позволяет классифицировать каналы:

  1. Шифрованный – открытый.
  2. Кодированный (например, псевдошумовым сигналом) – некодированный.
  3. Широкополосный – узкополосный.
  4. Дуплексный – односторонний.
  5. Мультиплексный – без сжатия.
  6. Скоростной – обычный.
  7. Восходящий – нисходящий.
  8. Широковещательный – индивидуальный.
  9. Прямой – обратный (возвратный).

Каналы связи

Вдобавок сетевые протоколы образуют иерархию OSI, каждый уровень можно представить каналом. Возможны другие критерии разбиения.

По корректирующему действию

Каналы изменяют проходящую информацию. Иногда намеренно:

  1. Линейные. Исходный сигнал легко восстановить, зная характеристики канала.
  2. Нелинейные. Часть информации безвозвратно теряется.
  3. Стохастические. Помехи реальных каналов редко поддаются предсказанию, даже статистическими методами.

Передача данных систем защиты

Технология ВЧ связи сейчас, как и раньше, играет важную роль в области передачи данных систем защиты. На магистральных и высоковольтных линиях с напряжением свыше 330 кВ, как правило, используются двойные системы защиты с разными способами измерения (например, дифференциальная защита и дистанционная защита). Для передачи данных систем защиты также используются различные способы передачи для обеспечения полной избыточности, включая коммуникационные каналы. Типичными каналами связи в этом случае является комбинация цифровых каналов по оптическим линиям для данных дифференциальной защиты и аналоговых ВЧ каналов для передачи сигналов-команд дистанционных защит. Для передачи сигналов защиты, технология ВЧ является самым надежным каналом. ВЧ связь является более надежным каналом передачи данных, чем другие, даже оптические линии не могут обеспечить такое качество по прошествии длительного времени. За пределами магистральных линий и на окончаниях сети, ВЧ связь часто становится единственным каналом для передачи данных систем защит.

Проверенная система SWT 3000 фирмы Siemens (Рисунок 4) является инновационным решением для передачи команд РЗ ПА с требуемой максимальной надежностью и одновременно с минимальным временем передачи команд в аналоговых и цифровых коммуникационных сетях.

Многолетний опыт в области передачи защитных сигналов позволил создать уникальную систему. Благодаря сложной комбинации цифровых фильтров и систем цифровой обработки сигналов удалось настолько подавить влияние импульсных помех — самых сильных помех в аналоговых каналах связи, что даже в сложных реальных условиях достигается надежная передача команд РЗ и ПА. Поддерживаются все известные режимы работы прямого отключения или разрешающего срабатывания с индивидуальными таймерами и скоординированной или нескоординированной передачей. Выбор режимов работы осуществляется с помощью программного обеспечения. Специфичные для российских электросетей функции про-тивоаварийной автоматики могут быть реализованы на той же аппаратной платформе SWT 3000.

При использовании цифровых интерфейсов идентификация устройства осуществляется по адресу. Таким образом возможно предотвращение случайного подключения других устройств по цифровым сетям.

Гибкая концепция два в одном позволяет использовать SWT 3000 во всех имеющихся каналах связи — медных кабелях, высоковольтных линиях, оптических линиях или цифровых в любых комбинациях Рисунок 5: 

  • цифровая + аналоговая на одной платформе;
  • 2 избыточных канала в 1 системе;
  • дублированный блок питания в 1 системе;
  • 2 системы в 1 среде.

Являясь очень экономичным решением SWT 3000 может интегрироваться в ВЧ систему PowerLink. В этой конфигурации обеспечивается возможность дублированной передачи — аналоговая по технологии ВЧ и цифровая, например, по SDH.

Примечания

  1. Автор называет объём канала также ёмкостью. См. Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. 1.2 Системы, каналы и сети связи // Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — С. 15. — 432 с.
  2. Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. 1.2 Системы, каналы и сети связи // Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — С. 14-15. — 432 с.
  3. Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. 1.2 Системы, каналы и сети связи // Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — С. 126. — 432 с.
  4. Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. 1.2 Системы, каналы и сети связи // Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — С. 128. — 432 с.
  5. Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В.,. 1.2 Системы, каналы и сети связи // Теория электрической связи / Под ред. Д. Д. Кловского. — Учебник для ВУЗов. — М.: Радио и связь, 1999. — С. 152. — 432 с.

Принцип действия

Информационные данные проходят путь меж локациями, преодолевая среду. Траекторию принято называть каналом связи. Современная техника пользуется последним типом классификации, рассматривая методы:

  1. Проводные (витая пара, кабель, оптическое волокно, медный провод).
  2. Беспроводные (спутники, радио, тепловое излучение, свет).

Модуляция

Изначально форма сигналов была максимально простой, чаще дискретной (азбука Морзе, код Шиллинга, визуальные знаки семафоров). Исследователи быстро осознали неэффективность элементарных приёмов. Уже Попов догадался применять амплитудную модуляцию несущей. Частотная рождена Эдвином Армстронгом (30-е годы). Инженеры Дженерал Электрик убедительно показали отличную устойчивость приёма вещания в условиях вспышек молний.

Цифровая эра

Вторая мировая война принесла миру более изощрённые варианты, включая кодирование псевдошумовыми сигналами, частотную манипуляцию. Предпринятые меры позволили сильно снизить спектральную плотность сигнала. Засечь передачу стало невероятно сложно, расшифровать – практически невозможно. Достижения военных лет развивались следующие несколько десятилетий. Ныне господствуют цифровые технологии, завтрашние шаги капризной истории сложно предсказать.

Сети

Основные современные каналы касаются непосредственно сегмента сетей, то есть линий, объединяющих активно взаимодействующие электронные объекты: компьютеры, телефоны, модемы. Ранее создания ARPANET обменом информации заведовал человек. Бурный рост сетевых технологий сделал возможным создание глобальных конформаций: интернет, услуги сотовых операторов. Международное взаимодействие сделало возможным тотальная стандартизация протоколов. В частности, первоначально (RFC 733) интернет получил определение сети, пользующейся стеком TCP/IP. Сегодня понятие стало намного шире, подразумевая планетарную систему взаимосвязанных хостов, несущих программное обеспечение HTTP-серверов.

Каналы связи

Персональные компьютеры

Отдельной строкой выступают шины персональных компьютеров. Эре зарождения многоядерных процессоров предшествовали такие сегодня малознакомые аббревиатуры, как PCI, ISA. Своему рождению Фидонет обязан карте расширения S-100. Неправильно – забывать исторические предпосылки. Пример – развал Фидонета, брошенного собственным разработчиком, обосновавшим ранее экономическую целесообразность применения телефонных линий. Ушёл создатель – развалилась система, лишённая опоры в виде уместности технологии, соответствия растущим требованиям, взвинченным конкурирующими методами интернета. Технический уровень юзеров являлся недостаточным, был бессилен продлить агонию умирающей концепции.

Отсутствие информационной поддержки

Западные телекоммуникационные средства образуют совокупность экономически обоснованных типов передачи информации. Не существует отечественных эквивалентов терминов, переданных англоязычным доменом паутины. По телекоммуникационным технологиям, параметрам приходится брать зарубежную справку. Отсутствие информационной поддержки назовём очередным слабым звеном, мешающим развитию индустрии.

Характеристики

Используют следующие характеристики канала

  • Эффективно передаваемая полоса частот ΔF{\displaystyle \Delta F};
  • Динамический диапазон D=10lg⁡PmaxPmin{\displaystyle D=10\lg {P_{max} \over P_{min}}};
  • Волновое сопротивление;
  • Пропускная способность;
  • Помехозащищённость A{\displaystyle A};
  • Объём Vk{\displaystyle V_{k}}.

Помехоустойчивость

Помехозащищённость A=10lg⁡Pmin signalPnoise{\displaystyle A=10\lg {P_{min~signal} \over P_{noise}}}. Где Pmin signalPnoise{\displaystyle {P_{min~signal} \over P_{noise}}} — минимальное отношение сигнал/шум;

Объём канала

Объём канала V{\displaystyle V} определяется по формуле: Vk=ΔFk⋅Tk⋅Dk{\displaystyle V_{k}=\Delta F_{k}\cdot T_{k}\cdot D_{k}},

где Tk{\displaystyle T_{k}} — время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала Vk{\displaystyle V_{k}} должен быть больше либо равен объёму сигнала Vs{\displaystyle V_{s}}, то есть Vk⩾ Vs{\displaystyle V_{k}\geqslant ~V_{s}}. Простейший случай вписывания объёма сигнала в объём канала — это достижение выполнения неравенств ΔFk⩾ ΔFs{\displaystyle \Delta F_{k}\geqslant ~\Delta F_{s}}, Tk⩾ Ts{\displaystyle T_{k}\geqslant ~T_{s}}> и ΔDk⩾ ΔDs{\displaystyle \Delta D_{k}\geqslant ~\Delta D_{s}}. Тем не менее, Vk⩾ Vs{\displaystyle V_{k}\geqslant ~V_{s}} может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.