История появления термина
Средневековые натурфилософы, в соответствии с учением Аристотеля, полагали, что для поддержания движения непременно требуется некоторая сила, без силы движение прекращается. Часть учёных выдвинула возражение против этого утверждения: почему брошенный камень продолжает двигаться, хотя связь с силой руки утрачена?
Для ответа на подобные вопросы Жан Буридан (XIV век) изменил ранее известное в философии понятие «импетус». По Буридану, летящий камень обладает «импетусом», который сохранялся бы в отсутствие сопротивления воздуха. При этом «импетус» прямо пропорционален скорости. В другом месте он пишет о том, что тела с бо́льшим весом способны вместить больше импетуса.
В первой половине XVII века Рене Декартом было введено понятие «количества движения». Он высказал предположение о том, что сохраняется не только количество движения одного тела, изолированного от внешних воздействий, но и любой системы тел, взаимодействующих лишь друг с другом. Физическое понятие массы в то время ещё не было формализовано — и он определил количество движения как произведение «величины тела на скорость его движения». Под скоростью Декарт подразумевал абсолютную величину (модуль) скорости, не учитывая её направление. Поэтому теория Декарта согласовывалась с опытом лишь в некоторых случаях (например, Валлис, Рен и Гюйгенс в 1668 году использовали её для исследования абсолютно упругого столкновения в системе центра масс).
Валлис в 1668 году первым предложил считать количество движения не скалярной, а направленной величиной, учитывая направления с помощью знаков «плюс» и минус». В 1670 году он окончательно сформулировал закон сохранения количества движения. Экспериментальным доказательством закона послужило то, что новый закон позволял рассчитывать неупругие удары, а также удары в любых системах отсчёта.
Закон сохранения количества движения был теоретически доказан Исааком Ньютоном через третий и второй закон Ньютона. Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».
Связываем работу силы и изменение импульса
Придать объекту импульс так же просто, как ударить клюшкой для гольфа по мячу. Достаточно применить элементарные алгебраические преобразования ко второму закону Ньютона и мы получим связь между работой силы и изменением импульса. С чего начать? Начнем со связи силы и скорости. Как известно, ускорение определяется следующей формулой:
где \( \Delta{v} \) — это изменение скорости за промежуток времени \( \Delta{t} \), \( v_0 \) — это начальная скорость в момент времени \( t_0 \), a \( v_1 \) — это конечная скорость в момент времени \( t_1 \). Теперь, если умножить обе части этой формулы на массу объекта \( m \), то слева получим:
Теперь, чтобы получить связь силы с импульсом объекта, умножим эту формулу на промежуток времени \( \Delta{t} \) и получим:
Посмотрите повнимательнее на правую часть формулы \( m(v_1-v_0) \). Поскольку импульс объекта с массой \( m \) равен \( p=mv \), то эта часть формулы выражает разницу конечного \( p_1=mv_1 \) и начального \( p_0=mv_0 \) импульса, т.е.:
Следовательно, в итоге получим:
Итак, справа имеем силу, умноженную на промежуток времени ее действия, т.е. \( F\Delta{t} \), а слева — изменение импульса \( \Delta{p} \). Убирая промежуточные выкладки, получим искомую формулу связи силы и изменения импульса объекта:
Пример: вычисляем импульс бильярдного шара
С помощью приведенных выше уравнений можно связать действующую на объект силу и приобретенный им импульс. Попробуем применить полученные знания при игре в бильярд. Допустим, что время контакта кия с бильярдным шаром приблизительно равно 5 мс (1 миллисекунда, или сокращенно 1 мс, равна 10-3 с). Насколько нужно изменить импульс неподвижного бильярдного шара, чтобы загнать его в лузу с отскоком от боковой стенки?
Пусть шар имеет массу 200 г (т.е. 0,2 кг). Допустим, что путем тщательных замеров и вычислений стало известно, что для попадания в лузу с отскоком от боковой стенки шару нужно приобрести скорость 20 м/с. Какую силу нужно приложить к кию для выполнения этой задачи?
Итак, в начальный момент времени шар покоится, т.е. начальная скорость \( v_0 \) = 0, а его конечная скорость \( v_1 \) должна быть равна 20 м/с. Вычислим необходимое изменение импульса по уже известной нам формуле:
Подставив значения получим:
Итак, необходимо изменить импульс шара на 4 кг·м/с. Вычислим, какую силу нужно для этого приложить за промежуток времени 5 мс по известной формуле:
откуда
Подставив значения, получим:
Итак, чтобы загнать бильярдный шар в лузу с отскоком от боковой стенки нужно прилагать к кию силу 800 Н в течение 5 мс.
Пример: определяем импульс капель дождя
После триумфальной демонстрации своих физических познаний в бильярдной попробуем использовать их в более привычной ситуации. Предположим, что на обратном пути домой внезапно начался дождь. Не беда, ведь под рукой есть зонт. Допустим, что на раскрытый зонт ежесекундно со средней скоростью около 10 м/с падает приблизительно 100 г капель воды. Вопрос: с какой силой нужно удерживать зонт массой 1 кг, чтобы удержать его под таким дождем?
Чтобы удержать зонт даже в отсутствие дождя, потребуется сила, равная весу зонта, то есть:
А как же подсчитать воздействие капель дождя? Предположим, что капли после падения на зонт почти мгновенно стекают по его почти горизонтальной поверхности. Даже в этом случае нам нужно учесть не только их массу, но и уменьшение скорости из-за встречи с зонтом. Действительно, летящие капли имеют начальную скорость 10 м/с, а после падения на зонт останавливаются, т.е. приобретают нулевую конечную скорость. Итак, имеем изменение импульса капель дождя, вызванное взаимодействием с зонтом. Попробуем оценить это изменение с помощью известной формулы:
Подставляя значения, получим:
Такое изменение импульса капель происходит ежесекундно. Свяжем теперь его с известной нам формулой:
Подставив значения, получим:
Итак, помимо силы 9,8 Н для удержания сухого зонта потребуется еще дополнительная сила 1 Н для компенсации торможения капель, т.е. всего потребуется сила 10,8 Н.
Момент импульса в квантовой механике
Оператор момента
В квантовой механике момент импульса квантуется, то есть он может изменяться только по «квантовым уровням» между точно определенными значениями. Проекция на любую ось момента импульса частиц, обусловленного их пространственным движением, должна быть целым числом, умноженным на ℏ{\displaystyle \hbar } (h{\displaystyle h} с чертой), определяемой, как постоянная Планка, поделенная на 2π{\displaystyle 2\pi }. Эксперименты показывают, что большинство частиц имеют постоянный внутренний момент импульса, который не зависит от их движения через пространство. Этот спиновой момент импульса всегда кратен ℏ2{\displaystyle \hbar /2} для фермионов и ℏ{\displaystyle \hbar } для бозонов. Например, электрон в состоянии покоя момент импульса ℏ2{\displaystyle \hbar /2}.
В классическом определении момент импульса зависит от 6 переменных rx{\displaystyle r_{x}}, ry{\displaystyle r_{y}}, rz{\displaystyle r_{z}}, px{\displaystyle p_{x}}, py{\displaystyle p_{y}}, и pz{\displaystyle p_{z}}. Переводя это на квантовомеханические определения, используя принцип неопределенности Гейзенберга, получаем, что невозможно вычислить все шесть переменных одновременно с любой точностью. Поэтому есть ограничение на то, что мы можем узнать или подсчитать о практическом моменте импульса. Это значит, что лучшее, что мы можем сделать — это подсчитать одновременно величину вектора момента импульса и какой-либо одной его компоненты (проекции).
Математически полный момент импульса в квантовой механике определяется как оператор физической величины из суммы двух частей, связанных с пространственным движением — в атомной физике такой момент называют орбитальным, и внутренним спином частицы — соответственно, спиновым. Первый оператор действует на пространственные зависимости волновой функции:
- L^=r^×p^,{\displaystyle {\hat {\mathbf {L} }}={\hat {\mathbf {r} }}\times {\hat {\mathbf {p} }},}
где r^{\displaystyle {\hat {\mathbf {r} }}} и p^{\displaystyle {\hat {\mathbf {p} }}} — координатный и импульсный оператор, соответственно, а второй — на внутренние, спиновые. В частности, для одной частицы без электрического заряда и без спина, оператор углового момента может быть записан как:
- L^=−iℏ(r×∇),{\displaystyle {\hat {\mathbf {L} }}=-i\hbar (\mathbf {r} \times \nabla ),}
где ∇{\displaystyle \nabla } — оператор набла. Это часто встречающаяся форма оператора момента импульса, но не самая главная, она имеет следующие свойства:
- Li,Lj=iℏεijkLk,Li,L2=,{\displaystyle =i\hbar \varepsilon _{ijk}L_{k},\quad \left=0,}
где εijk{\displaystyle \varepsilon _{ijk}} — Символ Леви-Чивиты;
и даже более важные подстановки с гамильтонианом частицы без заряда и спина:
- Li,H={\displaystyle \left=0.}
Симметрия вращения
Операторы момента импульса обычно встречаются при решении задач сферической симметрии в сферических координатах. Тогда момент импульса в пространственном отображении:
- −1ℏ2L2=1sinθ∂∂θ(sinθ∂∂θ)+1sin2θ∂2∂φ2.{\displaystyle -{\frac {1}{\hbar ^{2}}}\mathbf {L} ^{2}={\frac {1}{\sin \theta }}{\frac {\partial }{\partial \theta }}\left(\sin \theta {\frac {\partial }{\partial \theta }}\right)+{\frac {1}{\sin ^{2}\theta }}{\frac {\partial ^{2}}{\partial \varphi ^{2}}}.}
Когда находят собственные значения этого оператора, получают следующее:
- L2∣l,m⟩=ℏ2l(l+1)∣l,m⟩,{\displaystyle L^{2}\mid l,\;m\rangle ={\hbar }^{2}l(l+1)\mid l,\;m\rangle ,}
- Lz∣l,m⟩=ℏm∣l,m⟩,{\displaystyle L_{z}\mid l,\;m\rangle =\hbar m\mid l,\;m\rangle ,}
где l{\displaystyle l}, m{\displaystyle m} — целые числа, такие что −l≤m≤l,{\displaystyle -l\leq m\leq l,} а
- ⟨θ,φ∣l,m⟩=Yl,m(θ,φ){\displaystyle \langle \theta ,\;\varphi \mid l,\;m\rangle =Y_{l,\;m}(\theta ,\;\varphi )}
— сферические функции.
Изучаем количество движения
В физике импульсом называется количество движения, которое приобретает тело под действием заданной силы за определенное время. Играя в бильярд, нетрудно убедиться в разнообразных проявлениях импульса. Чем сильнее и быстрее удар кия по шару, тем интенсивнее движется шар. Чем больше столкновений испытает шар, тем менее интенсивным становится его движение.
В повседневных ситуациях мы привыкли говорить, что тому или иному объекту или событию придают импульс. Рассмотрим процесс передачи импульса более подробно на примере бильярдного кия и шара. Процесс передачи импульса начинается в момент \( t_0 \) первого соприкосновения кия с шаром и заканчивается в момент \( t_1 \) утраты контакта между кием и шаром. В общем зависимость силы воздействия кия на шар от времени имеет сложный характер. Однако доя простоты можно положить, что она линейно возрастает от нулевого значения в момент \( t_0 \) первого соприкосновения, достигает максимального значения в момент наибольшего контакта, а потом снижается до нуля в момент \( t_1 \) утраты контакта между кием и шаром. Эта идеализированная зависимость силы взаимодействия кия и шара от времени графически показана на рис. 9.1.
Время взаимодействия кия и шара очень мало (несколько долей секунды), и зафиксировать характер изменения силы можно только с помощью очень точного оборудования. Обычно физики используют не точные мгновенные значения, а усредненные величины. Например, в данном примере приобретенный шаром импульс \( \mathbf{p} \) равен произведению средней силы взаимодействия \( \mathbf{\overline{F}} \) и времени взаимодействия \( \Delta{t}=t_1-t_0 \):
Обратите внимание, что эта формула связывает векторы силы и импульса. Действительно, импульс — это вектор, обладающий некоторой величиной и направлением, совпадающим с направлением силы, например результирующей векторной суммы всех действующих на объект сил
История открытия
Слово «импульс» в переводе с латинского означает «толчок». В некоторых книгах вместо этого термина используется термин «количество движения». Это понятие ввели в науку тогда же, когда Исаак Ньютон открыл и сформулировал законы, которые позже были названы в его честь.
Впервые слово «импульс» использовал учёный Рене Декарт в начале XVII века. Тогда в физике ещё не применялось понятие массы. Декарт определил эту математическую величину как произведение скорости тела и его «величины». В дальнейшем Ньютон уточнил формулировку Декарта. Согласно его определению, импульс (или количество движения) пропорционален величине скорости и массы движущегося тела.
Силы, зависящие и не зависящие от времени
Выше закон импульса силы был представлен в дифференциальной форме. Чтобы посчитать значение этой величины, необходимо провести интегрирование по времени действия. Тогда получаем формулу:
Здесь сила F¯(t) действует на тело в течение времени Δt = t2-t1, что приводит к изменению количества движения на Δp¯. Как видно, импульс силы — это величина, определяемая силой, зависящей от времени.
Теперь рассмотрим более простую ситуацию, которая реализуется в ряде экспериментальных случаев: будем считать, что сила от времени не зависит, тогда можно легко взять интеграл и получить простую формулу:
Последнее равенство позволяет рассчитать импульс постоянной силы.
При решении реальных задач на изменение количества движения, несмотря на то, что сила в общем случае зависит от времени действия, ее полагают постоянной и вычисляют некоторую эффективную среднюю величину F¯.
Основные понятия и законы кинематики
кинематикойМеханическим движениемСистемой отсчётаТелом отсчётаМатериальной точкойТраекториейпрямолинейноекриволинейное
Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).
Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение — это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось)
А путь — это, наборот, скалярная величина, отражающая длину пройденной траектории.
Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещенияСкоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:
Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:
Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину
Ускорением
Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x + Vxt, где x — начальная координата тела, Vx — скорость движения.Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.
Скорость при свободном падении рассчитывается по формуле:
Перемещение по вертикали рассчитывается по формуле:
Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости
ω:
Угловая скорость связана с линейной скоростью соотношением где r — радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν
Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:
Понятие о моменте силы и его импульсе
Момент силы и импульс этого момента — это другие величины, отличные от рассмотренной выше, поскольку они касаются уже не линейного, а вращательного движения. Итак, момент силы M¯ определяется как векторное произведение плеча (расстояния от оси вращения до точки воздействия силы) на саму силу, то есть справедлива формула:
Момент силы отражает способность последней выполнить кручение системы вокруг оси. Например, если взяться за гаечный ключ подальше от гайки (большой рычаг d¯), то можно создать большой момент M¯, что позволит открутить гайку.
По аналогии с линейным случаем импульс M¯ можно получить, умножив его на промежуток времени, в течение которого он воздействует на вращающуюся систему, то есть:
Величина ΔL¯ носит название изменения углового момента, или момента импульса
Последнее уравнение имеет важное значение для рассмотрения систем с осью вращения, ведь оно показывает, что момент импульса системы будет сохраняться, если отсутствуют внешние силы, создающие момент M¯, что математически записывается так:. Таким образом, оба уравнения импульсов (для линейного и кругового движения) оказываются аналогичными в плане их физического смысла и математических следствий
Таким образом, оба уравнения импульсов (для линейного и кругового движения) оказываются аналогичными в плане их физического смысла и математических следствий.
Получаем импульс
Изменение импульса (т.е. определенного количества движения) объекта означает изменение характера его движения. Причем это изменение зависит от массы и скорости объекта, поскольку импульс равен произведению скорости и массы объекта
Импульс является очень важной физической концепцией, которая используется не только в начальном курсе физики, но и в некоторых очень сложных разделах физики, например в физике элементарных частиц, где компоненты атомов носятся с огромными скоростями. Именно на основании анализа импульсов до и после столкновения элементарных частиц ученые могут делать выводы о поведении субатомного мира
Общая идея импульса понятна даже тем, кому незнакомо это понятие. Не так уж легко остановить тележку, которая катится по склону горы. Дело в том, что тележка массивна и обладает большой скоростью. Еще труднее остановить огромный нефтяной танкер. Порой для полной остановки крупного танкера требуется около 30 км тормозного пути! И все это из-за огромного импульса, которым он обладает.
Итак, импульс объекта равен:
Как видите, импульс — это вектор с определенной величиной и направлением (о векторах подробнее рассказывается в главе 4). Импульс, как и количество движения, измеряется в системе СИ в ньютонах в секунду (Н·с), а в системе СГС — в динах-секундах (дин·с).
Момент импульса в электродинамике
При описании движения заряженной частицы в электромагнитном поле канонический импульс p{\displaystyle p} не является инвариантным. Как следствие, канонический момент импульса L=r×p{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} } тоже не инвариантен. Тогда берем реальный импульс, который также называется «кинетическим импульсом»:
- p−eAc,{\displaystyle \mathbf {p} -{\frac {e\mathbf {A} }{c}},}
где e{\displaystyle e} — электрический заряд, c{\displaystyle c} — скорость света, A{\displaystyle A} — векторный потенциал. Таким образом, гамильтониан (инвариантный) заряженной частицы массы m{\displaystyle m} в электромагнитном поле:
- H=12m(p−eAc)2+eφ,{\displaystyle H={\frac {1}{2m}}\left(\mathbf {p} -{\frac {e\mathbf {A} }{c}}\right)^{2}+e\varphi ,}
где φ{\displaystyle \varphi } — скалярный потенциал. Из этого потенциала следует закон Лоренца. Инвариантный момент импульса, или «кинетический момент импульса», определяется следующим образом:
- K=r×(p−eAc).{\displaystyle K=\mathbf {r} \times \left(\mathbf {p} -{\frac {e\mathbf {A} }{c}}\right).}