Все о природном газе: состав и свойства, добыча и применение природного газа

Происхождение

Существует две теории происхождения природного газа: минеральная и биогенная.

По минеральной теории, углеводороды образуются в результате химической реакции глубоко в недрах нашей планеты из неорганических соединений под действием высоких давлений и температур. Далее вследствие внутренней динамики Земли, углеводороды поднимается в зону наименьшего давления, образуя залежи полезных ископаемых, в том числе газа.

Согласно биогенной теории, природный газ образовался в недрах Земли в результате анаэробного разложения органических веществ растительного и животного происхождения под действием высоких температур и давлений.

Несмотря на продолжающиеся споры относительно происхождения углеводородов, в научном сообществе выигрывает биогенная теория.

Месторождения природного газа

В природе газ может находиться в следующих формах:

  • Газовые залежи в пластах некоторых горных пород. Залежи газообразных углеводородов как правило сосредоточены на глубине от 1000 м. Вопреки распространенному мнению, газ в таких залежах находится не в объемных пустотах, а преимущественно в мелких трещинах, микроскопических порах и каналах горных пород, например, песчаника. В составе такого газа преобладают низшие алканы: метан и этан. Крупнейшие запасы природного газа сосредоточены в России (Уренгойское месторождение), большинстве стран Персидского залива, США и Канаде.
  • Газовые шапки над нефтью и растворенный в нефти газ. Такие газообразные скопления называют Попутный нефтяной газ (ПНГ). В отличие «традиционного» природного газа, ПНГ в своем составе помимо метана и этана содержит значительное количество пропана, бутана и других более тяжелых углеводородов.
  • Газогидратные залежи. Газовые гидраты – это кристаллические соединения, которые образованы путем растворения газообразных углевоородов в пластовой воде при определенных термодинамических условиях – высоких давлениях и относительно низких температурах. 1 объем воды при переходе в гидратное состояние связывает до 220 объемов газа. Такая форма накопления природного газа была открыта во второй половине 20-го века. Газогидратные залежи находятся преимущественно в районах распространения многолетней мерзлоты, а также на относительно небольшой глубине под океанических дном.

Доказано, что большое количество углеводородов находится в мантии Земли, но в настоящее время, ввиду технической недоступности, они не представляют практического интереса.

Помимо залежей газа в недрах планеты, необходимо упомянуть, что углеводороды встречаются и в космосе. В частности, метан является третьим по распространенности газом во Вселенной после водорода и гелия. В форме метанового льда он входит в структуру планет и других космических тел. Однако такие образования не относят к залежам природного газа и при настоящем уровне развития технологий не могут быть извлечены.

Компоненты и составляющие природного газа:

Метан (CH4) – это бесцветный газ без запаха. Легче воздуха. Горюч и взрывоопасен. Представляет опасность для здоровья человека.

Этан (C2H6) – бесцветный газ, без запаха и вкуса. Тяжелее воздуха. Горюч и взрывоопасен. Не используется как топливо. Малотоксичен. Представляет опасность для здоровья человека.

Пропан (C3H8) – бесцветный газ, без запаха. Ядовит. В отличие от метана сжижается при комнатной температуре и сравнительно невысоком давлении (12-15 атм), что позволяет его легко хранить и транспортировать.

Бутан (C4H10) – бесцветный газ, со специфическим запахом. Ядовит. Вдвое тяжелее воздуха.

Пентан (С5Н12) имеет три изомера (нормальный пентан, изопентан и неопентан).  Нормальный пентан и изопентан – легколетучие подвижные жидкости с характерным запахом. Неопентан – бесцветный газ с характерным запахом. Горюч и взрывоопасен. Токсичен.

Гексан (С6Н14) – бесцветная жидкость со слабым запахом, напоминающим дихлорэтан. Горюч и взрывоопасен. Токсичен.

Азот (N2) – бесцветный газ, без запаха и вкуса. Весьма инертен. Является основным компонентом воздуха – 78,09 % объёма.

Аргон (Ar) – газ без цвета, вкуса и запаха. Инертен. В 1,3 раза тяжелее воздуха. Не горит. Представляет опасность для здоровья человека.

Водород (H2) – лёгкий бесцветный газ, без вкуса и запаха. В смеси с воздухом или кислородом горюч и взрывоопасен. Легче воздуха.

Гелий (He) – очень лёгкий газ без цвета, вкуса и запаха. Легче воздуха. Инертен, при нормальных условиях не реагирует ни с одним из веществ. Не горит. Представляет опасность для здоровья человека.

Сероводород (H2S) – бесцветный газ со сладковатым вкусом, с характерным неприятным запахом (тухлых яиц, тухлого мяса). Ядовит. Горюч и взрывоопасен. Тяжелее воздуха.

Углекислый газ (CO2) – бесцветный газ, почти без запаха (в больших концентрациях с кисловатым «содовым» запахом). Не горит. Тяжелее воздуха в 1,5 раза. Представляет опасность для здоровья человека.

Происхождение природного газа:

Существует две теории происхождения природного газа: биогенная (органическая) теория и абиогенная (неорганическая, минеральная) теория.

Впервые биогенную теорию происхождения природного газа в 1759 году высказал М.В. Ломоносов. В далеком геологическом прошлом Земли погибшие живые организмы (растения и животные) опускались на дно водоемов, образуя илистые осадки. В результате различных химических процессов они разлагались в безвоздушном пространстве. Из-за движения земной коры эти остатки опускались все глубже и глубже, где под действием высокой температуры и высокого давления превращались в углеводороды: природный газ и нефть. Низкомолекулярные углеводороды (т.е. собственно природный газ) образовывался при более высоких температурах и давлениях. Высокомолекулярные углеводороды – нефть – при меньших. Углеводороды, проникая в пустоты земной коры, образовывали залежи месторождений нефти и газа. Со временем эти органические отложения и залежи углеводородов уходили глубоко вниз на глубину от одного километра до нескольких километров  – их покрывали слои осадочных пород либо под действием геологических движений земной коры.

Минеральную теорию происхождения природного газа и нефти сформулировал в 1877 году Д.И. Менделеев. Он исходил из того, что углеводороды могут образовываться в недрах земли в условиях высоких температур и давлений в результате взаимодействия перегретого пара и расплавленных карбидов тяжелых металлов (в первую очередь железа). В результате химических реакций образуются окислы железа и других металлов, а также  различные углеводороды в газообразном состоянии. При этом вода попадает глубоко в недра Земли по трещинам-разломам в земной коре. Образовавшиеся углеводороды, находясь в газообразном состоянии, в свою очередь по тем же трещинам и разломам поднимаются наверх в зону наименьшего давления, образуя в конечном итоге газовые и нефтяные залежи. Данный процесс, по мнению Д.И. Менделеева и сторонников гипотезы, происходит постоянно. Поэтому, уменьшение запасов углеводородов в виде нефти и газа человечеству не грозит.

Некоторые частные случаи

  • Идеальный газ — газ, в котором взаимодействие между молекулами сводится к парным столкновениям, причём время межмолекулярного столкновения намного меньше среднего времени между столкновениями. Идеальный газ является простейшим модельным объектом молекулярной физики. В классической (феноменологической) термодинамике идеальный газ — гипотетический, не существующий в природе газ, в точности подчиняющийся уравнению газового состояния Клапейрона — Менделеева: PV=νRT{\displaystyle PV=\nu \;RT}
  • Реальный газ — агрегатное состояние вещества (простого тела). Состояние реальных газов достаточно точно описывается уравнением Клапейрона в условиях далёких от температуры конденсации, (высоко перегретые пары), а в условиях, близких к конденсации, где силами молекулярного взаимодействия уже нельзя пренебречь, вместо уравнения Клапейрона — Менделеева используются приближённые эмпирические и полуэмпирические уравнения. Наиболее простым и распространённым является уравнение Ван-дер-Ваальса. Известно немало попыток теоретического вывода уравнения состояния реального газа. Американский физик Д. Майер и советский математик Н. Боголюбов с помощью методов статистической физики вывели уравнение состояния реального газа в наиболее общем виде, включающее так называемые вириальные коэффициенты, являющиеся функциями только температуры. Вириальные коэффициенты не могут быть определены теоретическими методами и должны определяться с помощью экспериментальных данных.
  • Газ Ван-дер-Ваальса — идеализированный газ, точно подчиняющийся уравнению Ван-дер-Ваальса. Важнейшим свойством этого газа является существование в такой простой модели фазового перехода газ — жидкость.
  • Частично или полностью ионизованный газ называется плазмой (иногда называется следующим агрегатным состоянием).
  • Также газом в технике и в быту кратко называют природный газ, основу которого составляет газ метан.

Транспортировка

Подготовка газа к транспортировке

Несмотря на то, что на некоторых месторождениях газ отличается исключительно качественным составом, в общем случае природный газ – это не готовый продукт. Помимо целевого содержания компонентов (при этом целевые компоненты могут различаться в зависимости от конечного пользователя), в газе содержаться примеси, которые затрудняют транспортировку и являются нежелательными при применении.

Например, пары воды могут конденсироваться и скапливаться в различных местах трубопровода, чаще всего, изгибах, мешая таким образом продвижению газа. Сероводород – сильный коррозионный агент, пагубно влияющий на трубопроводы, сопоуствуеющее оборудование и емкости для хранения.

В связи с этим, перед отправкой в магистральный нефтепровод или на нефтехимический завод газ проходит процедуру подготовки на газоперерабатывающем заводе (ГПЗ).

Первый этап подготовки – очистка от нежелательных примесей и осушка. После этого газ компримируют – сжимают до давления, необходимого для переработки. Традиционно природный газ сжимают до давления 200 — 250 бар, что приводит к уменьшению занимаемого объема в 200 — 250 раз.

Далее идет этап отбензинивания: на специальных установках газ разделяют на нестабильный газовый бензин и отбензиненный газ. Именно отбензиненный газ направляется в магистральные газопроводы и на нефтехимические производства.

Нестабильный газовый бензин подается на газофракционирующие установки, где из него выделяют легкий углеводороды: этан, пропан, бутан, пентан. Данные вещества также являются ценным сырьем, в частности для производства полимеров. А смесь бутана и пропана – уже готовый продукт, используемый, в частности, в качестве бытового топлива.

Газопровод

Основным видом транспортировки природного газа является его прокачка по трубопроводу.

Стандартный диаметр трубы магистрального газопровода составляет 1,42 м. Газ в трубопроводе прокачивается под давлением 75 атм. По мере продвижения по трубе, газ, за счет преодоления сил трения, постепенно теряет энергию, которая рассеивается в виде тепла. В связи с этим, через определенные промежутки на газопроводе сооружаются специальные компрессорные станции подкачки. На них газ дожимается до необходимого давления и охлаждается.

Для доставки непосредственно до потребителя от магистрального газопровода отводят трубы меньшего диаметра — газораспределительные сети.

Газопровод

Транспортировка СПГ

Что делать с труднодоступными районами, находящимися вдали от основных магистральных газопроводов? В такие районы газ транспортируется в сжиженном состоянии (сжиженный природный газ, СПГ) в специальных криогенных емкостях по морю, и по суше.

По морю сжиженный газ перевозится на газовозах (СПГ-танкерах), судах оборудованных изотермическими емкостями.

СПГ перевозят также и сухопутным транспортом, как железнодорожным, так и автомобильными. Для этого используются специальных цистерны с двойными стенками, способными поддерживать необходимую температуру определенное время.

Ресурс — углеводородное сырье

Ресурсы углеводородного сырья, используемые в промышленности, можно разделить на две большие группы: природные углеводородные газы ( природный, попутный, газ нефтестабилизации); углеводородные газы и жидкие углеводороды, получаемые при переработке нефти, сланцев, коксования. Могут использоваться и другие газы — генераторный, газы подземной газификации угля, коксования торфа, но они пока практического значения в промышленности не имеют.

Ресурсы углеводородного сырья перспективных НПЗ позволяют создать крупнотоннажные производства нефтехимических продуктов массового применения, в том числе полиэтилена 50 тыс. т / год, фенола и ацетона 60 и 36 тыс. т / год, СЖК, СЖС и БВК на основе жидких парафинов 140 тыс. т / год и др., объемы производства и номенклатура которых должны быть уточнены применительно к конкретным районам строительства заводов.

Дополнительными ресурсами углеводородного сырья может — служить конденсат Джебольского газоконденсатного месторождения.

Дифференциация ресурсов углеводородного сырья с учетом найденных стоимостных параметров ( МПЦ) и принятых рыночных цен ( РЦ) на активные ( МПЦ РЦ) и пассивные ( МПЦ РЦ) элементы ресурсной базы и сведение воедино полученных значений активных элементов служат логическим завершением комплексной экономической оценки ресурсов нефти и газа.

Из ресурсов легкого углеводородного сырья для пиролиза может быть использован сухой газ нефтепереработки.

Номограмма для определения содержания углеводородов.| Номограмма для определения содержания метана в газе первой ступени сепарации пластовой нефти.| Номограмма для определения содержания этана в газе первой ступени сепарации пластовой нефти.

При определении ресурсов углеводородного сырья по месторождению необходимо знать не только количество газа, но него углеводородный состав, который изменяется в зависимости от давления разгазирования. Из общего анализа пластовых нефтей обычно бывает известен состав газа однократного разгазирования.

США располагают большими ресурсами углеводородного сырья для развития химической промышленности. На долю этой страны приходилось в 1971 г. 23 9 % добычи сырой нефти, 71 5 % добычи природного газа и 28 % мощностей нефтеперерабатывающих заводов капиталистических и развивающихся стран.

США располагает значительными ресурсами углеводородного сырья, имеет развитую нефтгпсмсрабагываюшую промышленность с высоким уровнем вторичных процессов, большие мощности по переработке попутных и природных газов.

Современное состояние проблемы ресурсов углеводородного сырья обусловливает необходимость включать в разработку нефтяные месторождения с осложненными условиями их освоения. Возникающие трудности при этом во многом определяются аномалиями реологических свойств нефтей, которые вызваны высоким содержанием в них твердых парафинов. Промышленная нефтегазоносность миоценового комплекса пород установлена в континентальной части бассейна. К настоящему времени открыто одно газовое ( Западно-Озерное) и три нефтегазоконденсатных многопластовых месторождения: Верхне-Эчинское, Верхне-Телекайское и Ольховское. Локальное поднятие, осложненное двумя куполами и выявленное в 1973 г. съемкой 2D — MOB, располагается примерно в 20 — 25 км от северных подножий горных массивов, входящих в систему Корякского нагорья.

Основным районом сосредоточения ресурсов газового углеводородного сырья является Средняя Волга, на долю которой приходится до 55 % всех имеющихся ресурсов нефтеперерабатывающих заводов. Выгодное географическое расположение этого района, его относительная близость к центральным и восточным областям страны позволят в случае необходимости использовать эти ресурсы для развития нефтехимической промышленности в.

Газовые конденсаты являются существенным ресурсом углеводородного сырья. Их суммарная добыча сейчас достигает 25 — 28 млн т / год, что в среднем по стране составляет около 40 г на 1 м3 добываемого газа.

Наша страна располагает неограниченными ресурсами углеводородного сырья, из которых основными являются природные и попутные газы.

Динамика добычи нефти и газа на месторождениях Тюменской области.

Омская область располагает незначительными ресурсами углеводородного сырья.

Добыча природного газа:

Залежи природного газа находятся глубоко в земле, на глубине от одного до нескольких километров. Поэтому, чтобы добыть его необходимо пробурить скважину. Самая глубокая скважина имеет глубину более 6 километров.

В недрах Земли газ находится микроскопических пустотах  – порах, которыми обладают некоторые горные породы. Поры соединены между собой микроскопическими каналами – трещинами. В порах и трещинах газ находится под высоким давлением, которое намного превышает атмосферное. Природный газ движется в порах и трещинах, поступая из пор с высоким давлением в поры с более низким давлением.

При бурении скважины газ вследствие действия физических законов полностью поступает в скважину, стремясь в зону низкого давления. Таким образом, разность давления в месторождении и на поверхности Земли является естественной движущей силой, которая выталкивает газ из недр.

Газ добывают из недр земли с помощью не одной, а нескольких и более скважин. Скважины стараются разместить равномерно по всей территории месторождения для равномерного падения пластового давления в залежи. Иначе возможны перетоки газа между областями месторождения, а также преждевременное обводнение залежи.

Так как добытый газ содержит множество примесей, то его сразу же после добычи очищают на специальном оборудовании, после чего транспортируют потребителю.

Физические свойства природного газа

Вследствие своего состава природный газ горюч. Чистый газ горит голубым пламенем, поэтому его иногда называют «голубым топливом». Примеси же могут окрашивать пламя в различные цвета. Также пламя начинает желтить при недостатке кислорода, что приводит к неполному сгоранию газа и образованию копоти и угарного газа.

Смесь с воздухом в диапазоне концентраций от 4,4 до 17% взрывоопасна

Поэтому важно контролировать содержание газа в окружающей атмосфере, а также вовремя принимать соответствующие меры в случае его утечки

Природный газ бесцветен и не имеет запаха, за исключением случаев повышенного содержания в его составе сероводорода. В связи с этим, для облегчения обнаружения утечек газа, к нему в небольших концентрациях добавляют специальные одоранты – вещества с резким неприятным запахом. В качестве одорантов преимущественно используются серосодержащие соединения, например, тиолы (меркаптаны). Стандартная концентрация таких добавок составляет 16 г на 1000 м3. Однако человек способен уловить присутствие одного из самых распространенных одорантов – этилмеркаптана, даже при его концентрации в воздухе 2*10-6 % по объему.

Физические свойства природного газа зависят от его компонентного состава, однако в большинстве случаев основные параметры укладываются в диапазоны, приведенные в таблице ниже.

  PetroDigest.ru
Плотность 0,65…0,85 кг/м³ (сухой газообразный); 400…500 кг/м³ (сжиженный)
Температура самовоспламенения Около 650 °C
Удельная теплота сгорания: 28…46 МДж/м³ (6,7…11,0 Мкал/м³ или 8…12 кВт·ч/м³)

Серый, голубой, зеленый

Несмотря на обширную географию и разношерстность данных проектов, все они упираются в необходимость промышленного производства водорода, поскольку в чистом виде в природе этот газ не встречается. Большинство этих проектов являются энергозатратными и далеко не все из них позволяют избежать «углеродного следа», что приводит к сохранению большого объема выбросов в атмосферу.

Самым популярным на текущий момент является метод производства водорода за счет паровой конверсии метана. При этом метан может быть выделен из природного газа или синтезирован из угля. Этот процесс относится к одному из самых дешевых по себестоимости получаемого водорода — примерно 1-2 доллара за килограмм газа. Однако он приводит к выбросам углекислого газа в атмосферу. Эмиссия CO2 при паровой конверсии метана достигает 10 кг на один килограмм водорода. Поэтому этот способ производства водорода часто в литературе именуют «серым».

Химическая формула паровой конверсии

В последнее время эту технологию пытаются усовершенствовать за счет строительства установок по улавливанию и хранению углекислого газа, что превращает проекты из «серых» в «голубые». Однако это приводит к увеличению капитальных затрат по ним до 80% и росту примерно в полтора раза стоимости получаемого водорода. На текущий момент в мире реализуется три проекта с интеграцией установок по улавливанию углекислого газа в проекты по производству водорода — это Port Arthur в США, Quest в Канаде и Tomakomai в Японии. Кроме того, в Австралии был подготовлен проект японской компании Kawasaki по производству водорода из синтетического газа, который в свою очередь получается в процессе газификации бурого угля. Водород будет на специальных танкерах доставляться в Японию. Образовавшийся CO2 будет улавливаться и закачиваться в пласт. Невысокая цена австралийского угля и простота его добычи позволяет сделать данный проект рентабельным.

Существует еще один способ получения водорода — электролиз воды. Данная технология позволяет получать водород с минимальным углеродным следом, однако она требует и больших энергетических затрат. Этот способ производства водорода часто совмещают с проектами на возобновляемых источниках энергии, такой водород называют «зеленым».

Электролиз воды

По данным МЭА, в течение последних 10 лет в среднем в мире вводили в эксплуатацию около 10 МВт электролизеров ежегодно. В 2018 году введено уже 20 МВт, а до конца 2020 года ожидается ввод еще 100 МВт.

Но у этого метода есть несколько существенных недостатков. Во-первых, выделяемый таким образом водород является очень дорогим. Он более чем в три раза дороже водорода, произведенного путем конверсии метана. Кроме того, метод электролиза водорода требует больших затрат воды. Так, расширение применения этой технологии, по данным МЭА, может потребовать до 617 млн кубометров чистой воды в год. Такие объемы могут позволить себе далеко не все регионы мира.

Кроме того, существует вариант использования водорода в смеси с метаном. Это позволяет снизить выбросы парниковых газов на 8-15 % по сравнению с использованием чистого метана. Подобный подход уже применяется в ряде европейских стран.

Исследования, проведенные европейскими производителями оборудования, показывают, что некоторые виды современных промышленных газовых турбин уже способны сжигать топливную смесь, содержащую до 50 — 60 % водорода. Правда, в Европе до сих пор нет единых нормативов, регулирующих предельные уровни водорода в газотранспортных системах, что затрудняет массовое применение такого подхода.

Поэтому весь научный мир продолжает искать способы удешевления производства водорода наравне с возможностями широкомасштабного использования подобных технологий.

Какой газ подается в жилые дома и котельные

Газоснабжение: о природном газе, метане и пропане

В разных странах в дома подается различное газовое топливо: природный газ (в том числе от газового конденсата), метан (methane, CH4), пропан (propane, C3H8). И метан, и пропан обычно входят в состав природного газа — смесь углеводородов.

Но! Газ можно фальсифицировать — разбавлять как и молоко, извлекать ценные вещества:читайте Сколько стоит газ через счётчик газа, или сколько стоит тепло от газа — при установленном газосчётчикеМожет ли поставщик газа что-нибудь добавлять в газ, чтобы счётчик газа показывал больше(главное, чтобы потребители газа были довольны. по незнанию)

На газификацию многоэтажных домов существуют ограничения по высоте зданий, это связано с пожароопасностью и взрывоопасностью — обычно дома выше 12-14 этажей не газифицируются до квартир. Вероятно, этажность газификации зависит от сейсмоопасности района, конструкции зданий.

Знаю 14-ти этажный газифицированный дом-башню в городе Варна (Болгария), с лестничным колодцем в середине. А строительная сейсмоопасность — 7 баллов (что означают баллы и магнитуды землетрясений).

Газоснабжение

Газ подается по газораспределительным трубам-сетям (piped-in public utility services) или из локальных газохранилищ, куда доставляется в сжатом или сжиженном виде — автомобилями, железнодорожными цистернами-«газовозками» или индивидуально — в баллонах. Технологии снабжения сжатым или сжиженным природным газом, пропаном, метаном — compressed natural gas — CNG, или жидкий природный газ СПГ, LPG, LPG-propane. Газоснабжение — это не «просто труба из скважины».

В городские многоквартирные жилые дома или котельные обычно подается сетевой природный газ, после очистки и доведения до кондиций.

От состава подаваемого газа зависит модификация оконечного газового бытового оборудования, и никто, кроме газораспределительной компании, точно не скажет, какой газ они подают в дома.

Например, европейская компания «Горение» («Gorenje», из бывшей Югославии, из Словении), помню, что в спецификации на газовые плиты указывала тип конфорок для различных газов. Ибо поставки — в США (раньше были, сейчас не знаю), в Западную Европу, Восточную Европу, «страны СНГ».

Из чего состоит природный газ — состав газа

Природный газ состоит из углеводородов-газов — метана на 80-100% и углеводородов-гомологов метана:этан (C2H6), пропан, бутан (C4H10),а из неуглеводородных вещества:вода (в виде пара), водород, сероводород (H2S), диоксид углерода (СО2), азот (N2), гелий (Не).

Чем больше водорода в молекулярном составе «газа», тем газ чище горит. То есть, «идеальным» газом в трубе является метан CH4.

Сероводород и вода являются самыми неприятными составляющими компонентами сетевого газа. Сероводород успешно вступает в реакции с металлами, особенно в присутствии воды — то есть, вызывает коррозию труб-газопроводов, «газовых котлов» (отопительного оборудования и бойлеров), металлических дымоходов. Концентрации сероводорода обычно не высоки, 0 и 0 десятых, однако и газопроводы с оконечным газовым оборудованием должны работать не один десяток лет.

Никогда не слышал про то, что замерзшая вода образует ледяные пробки в газовых трубах.

Азот в газе никак не влияет на газопроводы и газовое оборудование, просто «пустая порода», снижающая калорийность газа. Азотом даже делают опрессовку газопроводов и сетей (испытание повышенным давлением) и продувку для очищения сетей от природного газа.

Об опасности взрыва и пожара «от газа»

Взрывоопасность. Концентрация газа для воздушного взрыва (именно взрыва, со сверхзвуковой скоростью, а не хлопка — быстрого горения) является очень «тонкой» величиной, зависящей от состава газа, температуры, давления, состава воздуха и пр. Взрывоопасными считаются концентрации природного газа от 5 до 15 объемных процентов, а возгорание природного с воздухом при нормальных условиях без катализаторов горения происходит примерно при 650 градусах Цельсия.

Горючие газы в составе природного газа легче воздуха, поэтому «теоретически» места опасной концентрации газа должны возникать в верхних этажах дома, однако практика намного сложнее.

Географию мировой добычи природного газа и соответсвенно разнообразие состава природных топливных газов иллюстрирует карта добычи природного газа из Википедии.В статье использованы кое-какие сведения из Википедии

последние изменения статьи 09мар2011, 26окт2017

Химический состав природного газа:

Химический состав добываемого природного газа различается в зависимости от месторождения. В любом случае основным и ценным компонентом является метан (СН4), содержание которого составляет от 70 до 98 %.

В состав добываемого газа входят как углеводородные компоненты (метан СН4 и его гомологи: этан С2Н6, пропан С3Н8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан С7Н16, октан С8Н18, нонан С9Н20, декан С10Н22 и т.д. вплоть до доказана С22Н46), так и неуглеводородные компоненты (Ar, H2, He, N2, H2S, водяные пары – H2O, CO, CO2 и пр. серосодержащие соединения и инертные газы). Природный газ также содержит следовые количества других компонентов.

Углеводороды, начиная с этана, считаются тяжёлыми. Они образуются только в процессе образования нефти и также называются специфическими «нефтяными» газами. Они  являются обязательным спутником нефтей. Их наличие в отобранных пробах свидетельствует о залежах нефти.