Фильтры: какие действительно нужны?

Как выбрать сетевой фильтр для бытовой техники

Выбор сетевого фильтра во многом зависит от бюджета и оборудования, которое этот фильтр должен защищать. Нужно понимать, что чем чувствительнее бытовой прибор к перепадам напряжения, тем сложнее по устройству и дороже необходимо приобретать сетевой фильтр

Также важно продумать на какое количество электрических приборов будет рассчитан данный фильтр: это влияет на размеры розеточной группы и допустимую нагрузку

Фильтры: какие действительно нужны?Watch this video on YouTube

На некоторые сетевые фильтры может быть прямо указано назначение: для компьютеров, акустических приборов, стиральных машин или другого оборудования.

Дополнительными функциями сетевых фильтров являются: грозозащита, наличие датчиков перегрева, портов USB, индикация, а также возможность «умного» управления.

Также лучше всего приобретать устройства от проверенных известных производителей, так как они имеют большой опыт в производстве таких приборов, а также много сервисных центров, сертификацию и гарантию.

Как работают фильтры с обратной промывкой?

Технологии обратной промывки позволяют стабильно обеспечивать потребителя очищенной водой, даже в момент промывки сетчатого фильтра.

Сетка промывочного фильтра с обратной промывкой состоит из основной нижней и дополнительной верхней секции. В режиме фильтрации верхняя секция находится в закрытом состоянии, и вода проходит через большую нижнюю секцию в направлении снаружи — внутрь.

При открывании шарового клапана включается режим обратной промывки фильтра, при котором весь сетчатый элемент опускается вниз. В этом положении подача воды прекращается, и она проходит через малую верхнюю секцию, где после очистки поток воды разделяется на два потока: один — потребителю, другой — для проведения обратной промывки.

Поток для обратной промывки раскручивает турбину и, пройдя через нее с ускорением, очищает нижнюю секцию сетчатого фильтра изнутри — наружу. Таким образом, основная нижняя секция под входным давлением полностью очищается по всей поверхности сетки. После закрытия шарового клапана промывной фильтр автоматически возвращается в режим фильтрации.

Круглый (циркулярный) поляризационный фильтр

Если вы когда-либо носили поляризующие очки, то испытали на себе эффект циркулярного поляризационного фильтра. Этот вид состоит из двух соединенных стекол, которые можно независимо поворачивать для регулировки силы поляризации. На практике вы видите результат на экране или смотрите сквозь видоискатель и поворачиваете поляризатор пока не получите желаемый результат.

Это обязательный аксессуар для любого фотографа.

Круглому поляризатору можно найти множество применений. Главное – эффекты, создаваемые с его помощью очень сложно или нереально воссоздать при помощи программной обработки. Как ни странно, свое название фильтр получил не из-за круглой формы. Оно относится к методу поляризации. Старые пленочные камеры использовали «линейные» фильтры. Они не позволяют замерять свет и работать с некоторыми видами автофокуса. Поэтому сейчас они устарели и почти не продаются

Обращайте внимание при покупке – вам нужен именно циркулярный поляризационный фильтр, хотя вряд ли сейчас можно встретить линейный тип

Поляризационный фильтр сокращает блики от сияющих предметов, например, воды или листьев. Когда вы впервые поработаете с поляризатором, вы будете удивлены, насколько много бликов есть на повседневных предметах. Особенно сильно без поляризатора блестит растительность. Правильное использование такого фильтра обеспечивает более богатые, глубокие и реалистичные цвета при съемке объектов, которые обычно отбрасывают блики.

А также такой фильтр может смягчить или убрать отражения на поверхности воды. Хоть иногда отражения и нужны, бывают ситуации, когда без них получается более интересное фото. Один из примеров – мелкое прибережье с интересными камнями под водой. Если небо отражается в воде, довольно трудно запечатлеть, что происходит под ее поверхностью. Однако, используя поляризатор, можно сделать воду кристально чистой и фотографировать происходящее на дне.

Поляризационные фильтры также делают синее небо более темным и глубоким

Хотя тут важно не перестараться, иначе получится нереалистичный вид. Но также, если снимать небо с очень широким углом и поляризационным фильтром, цвет в разных участках может отличаться

Это происходит из-за того, что эффект поляризатора варьируется в зависимости от угла падения солнечных лучей и при съемке с широкоугольником вы одновременно захватываете участки неба с разными углами. В таком случае лучше просто снять фильтр.

Градиентные фильтры

Если у нейтрального фильтра затемнена только половина, а вторая половина прозрачна, причём между двумя зонами имеется плавный переход, такой фильтр называется градиентным (Graduated ND). Он применяется для съёмки высококонтрастных сцен, например закатов, когда небо значительно ярче пейзажа. Затенив с помощью фильтра верхнюю часть кадра, вы получаете возможность увеличить экспозицию в нижней части и таки уместить всю сцену в динамический диапазон камеры.

Градиентные фильтры весьма разнообразны. Тёмная часть фильтра может иметь различную плотность; собственно градиент может быть плавным или же представлять собой чёткую границу, линия которой может быть как прямой, так и изогнутой, чтобы соответствовать рельефу местности. Существуют обратные градиентные фильтры, имеющие тёмную полосу посередине и светлые края. Их используют, чтобы притенить закатное солнце, оставив верх и низ кадра без изменений. Фильтр может быть нейтрально серым, а может – и цветным для придания небу желаемого оттенка.

Большинство градиентных фильтров имеют круглую форму и стандартную оправу с резьбой, но при этом могут поворачиваться внутри оправы, чтобы дать фотографу возможность управлять наклоном градиента. Однако существуют и большие квадратные фильтры, которые вставляются в специальный держатель, предварительно закреплённый на объективе. Такие фильтры могут скользить по направляющим держателя вверх и вниз, позволяя изменять положение границы тёмной и светлой областей фильтра. Сам же держатель может быть повёрнут для обеспечения нужного угла наклона. Лично я предпочитаю круглые фильтры в обычной оправе, поскольку нахожу систему с держателем слишком громоздкой, но это дело вкуса.

Использовать градиентные фильтры следует аккуратно. Остерегайтесь сцен, содержащих предметы, пересекающие границу между тёмной и светлой половинами. Представьте себе горные вершины на фоне затянутого облаками неба. Небо слишком светлое, а горы слишком тёмные. Если вы примените в этой ситуации градиентный фильтр – то да, вам удастся получить детали и в облаках, и у подножия гор, но собственно вершины станут почти чёрными, что будет выглядеть особенно неестественным, учитывая нормально проэкспонированный низ сцены. Вряд ли вы найдёте в продаже фильтр с зубчатой границей, в точности повторяющей рисунок горного хребта.

Идеальный сюжет для применения градиентного фильтра – закат над морем или степью, поскольку граница между зонами с различной яркостью ровная и совпадает с горизонтом.

Градиентные фильтры незаменимы при съёмке на цветную обращаемую плёнку в силу её малого динамического диапазона. При работе с цифровой камерой зачастую можно обойтись и без фильтра, призвав на помощь HDR, т.е. сделав несколько снимков с различной экспозицией, объединить их затем в единое изображение. Метод превосходный, но требует аккуратности и большого вкуса. Кроме того, для HDR непременно нужен штатив и неподвижный сюжет. Если вы снимаете с рук или если в кадре присутствуют раскачиваемые ветром деревья, градиентный фильтр – единственный выход.

Обеспечиваем стандартные 220 вольт

Как мы уже сказали выше, проблемы с подачей электроэнергии носят множественные причины. Но решать их «на месте» не всегда возможно: если переделать проводку в собственной квартире ещё как-то получиться, то повысить качество электрооборудования в доме или наладить работу местной электросети – нет. Поэтому проще найти универсальный ответ в виде устройств, защищающих электроприборы в доме (бытовую технику и электронику) от скачков напряжения, смены частотности тока и электромагнитных наводок.

Базовый, но достаточный в большом проценте случаев сбоев уровень защиты предоставляют сетевые фильтры и стабилизаторы напряжения.

Внешне сетевые фильтры напоминают традиционные удлинители или переходники – если речь идёт о моделях с одной розеткой. Однако, на самом деле устройство имеет куда более сложную конструкцию, чем банальный удлинитель.

Общая схема сетевого фильтра

В её основе лежит компенсационная схема, работа которой заключается в преобразовании энергии импульса в тепловую энергию. Для этого сетевой фильтр использует варисторы. Дополнительную защиту на случай больших колебаний напряжения дают встроенные плавкие предохранители – которых может быть несколько.

Также схема устройства включает в себя конденсаторы и симметричный дроссель для сглаживания помех. Шумы электролинии фильтруют встроенные индукторы. Наконец, сетевой фильтр не смог бы нормально работать без ограничителя по току, который способен полностью перекрыть энергоснабжение подключённых приборов и электронных устройств.

Эффективная работа сетевого фильтра требует, чтобы устройство было заземлено. Если сделать это невозможно – качество защиты может заметно снижаться.

Если функций сетевого фильтра, даже правильно выбранного (о чём – ниже) и заземлённого, не хватает (что бывает в случае низкого качества электросетей с частыми сбоями и длительной работой вне стандартных параметров), то пользователю стоит обратить внимание на стабилизаторы напряжения. Стабилизаторы напряжения позволяют получать на выходе стабильные 220 вольт при весьма широком диапазоне характеристик входящего тока

Как и сетевые фильтры они сглаживают скачки напряжения, убирают помехи на линии, защищают от коротких замыканий в сети и перебоев. Стабилизатор незаменим там, где есть заметное «проседание» напряжения (проблема многих частных домов, расположенных за городской чертой). Также стабилизатор более корректно, чем сетевой фильтр реагирует на скачки напряжения с его увеличением. Фактически, при росте напряжения выше значения 260-270 вольт сетевой фильтр способен лишь оплавить предохранитель, прервав подачу тока

Стабилизаторы напряжения позволяют получать на выходе стабильные 220 вольт при весьма широком диапазоне характеристик входящего тока. Как и сетевые фильтры они сглаживают скачки напряжения, убирают помехи на линии, защищают от коротких замыканий в сети и перебоев. Стабилизатор незаменим там, где есть заметное «проседание» напряжения (проблема многих частных домов, расположенных за городской чертой). Также стабилизатор более корректно, чем сетевой фильтр реагирует на скачки напряжения с его увеличением. Фактически, при росте напряжения выше значения 260-270 вольт сетевой фильтр способен лишь оплавить предохранитель, прервав подачу тока.

Общая схема стабилизатора напряжения

Принцип работы стабилизатора основан на переключении обмоток трансформатора, благодаря чему входной ток выравнивается по напряжению в сторону увеличения или снижения. Управляет переключениями обмотки полупроводниковые элементы или реле.

При выборе сетевого фильтра или стабилизатора в первую очередь необходимо обращать внимание на общую мощность устройств, которые планируется к ним подключать. Также важен параметр максимального поглощения импульса, выражаемый в джоулях

Далее идут такие характеристики, как количество розеток, длина шнура, наличие дополнительных разъёмов (USB, телефонной линии), наличие индикации и информационных дисплеев, возможность крепления фильтра на стене и так далее.

Как работают самопромывные фильтры?

Обычный режим:

  1. Входная вода проходит через сетку грубой очистки.
  2. Сетка грубой очистки защищает сетку тонкой очистки от повреждений крупными частицами загрязнения.
  3. Вода попадает через сетку грубой очистки в центральную часть корпуса и проходит через сетку тонкой очистки, на которой задерживаются мелкие частицы.
  4. Чистая вода проходит сквозь сетку тонкой очистки и далее через выходное отверстие, а частицы грязи остаются на внутренней поверхности сетки тонкой очистки. Это приводит к падению давления на выходе фильтра и выключению цикла обратной промывки.

Обратная промывка:

  1. Клапан промывки. Сигнал о падении давления направляется в электронный контроллер, который дает команду на открытие клапана для осуществления обратной промывки.
  2. Всасывающее сопло. Сопло интенсивно впитывает грязь с поверхности сетки тонкой очистки.
  3. Грязевой коллектор. Коллектор отводит удаленную из сетки грязь в камеру гидромотора.
  4. Гидромотор. Загрязненная вода проходит через гидромотор, заставляя грязевой коллектор осуществлять оборотно-поступательные движения. Это позволяет грязевому коллектору очищать 100% поверхности сетки. Далее загрязненная вода удаляется через клапан промывки.
  5. Поршень. В конце цикла обратной промывки поршень возвращает грязевой коллектор в исходное положение.

Автоматический процесс очистки фильтра экономит Ваше время и деньги, практически сведя к нулю расходы на техническое обслуживание оборудования. Подобные фильтры используются в промышленности для фильтрации оборотной воды, воды для накопительных емкостей, фильтрации сахарного сиропа, воды для песчаных фильтров, артезианской воды, перед установками обратного осмоса и др.

Применение

LC-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемые LC-фильтры, например, простейший LC-контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Применение

LC-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемые LC-фильтры, например, простейший LC-контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Как работают фильтры с прямоточной промывкой?

Принцип работы данных фильтров похож на работу картриджных фильтров: при фильтрации все механические примеси задерживаются фильтрующим элементом (сеткой), а очищенная от механических загрязнений вода поступает к потребителю. Но есть и существенное отличие — «картридж» не меняется, а промывается неочищенной водой.

При правильной эксплуатации промывочного фильтра и с учетом особенности фильтрованной воды сетки фильтра обычно хватает на 1-2 года.

У фильтров с прямой промывкой в нижней части имеется сливное отверстие, которое открывается с помощью шарового крана. В кране устанавливается дренажный штуцер, к которому подводится гибкий шланг или пластиковая труба.

При промывке фильтра шаровой кран дренажного отверстия открывается, и вода смывает отложенные на сетке механические примеси. Для того чтобы увеличить срок эксплуатации сетки рекомендуется периодически (после 5-6 промывок) разбирать фильтр и промывать сетку и колбу с помощью щетки, чтобы удалить те загрязнения, что задержались в отверстиях сетки, и которые не смыл поток воды.

Типы фильтров

Фильтры, находящие применение в обработке сигналов, бывают

  • аналоговыми и цифровыми
  • пассивными или активными
  • линейными и нелинейными
  • рекурсивными и нерекурсивными

Среди множества рекурсивных фильтров отдельно выделяют следующие фильтры (по виду передаточной функции):

  • фильтры Чебышёва
  • фильтры Бесселя
  • фильтры Баттерворта
  • эллиптические фильтры

По порядку (степени уравнения) передаточной функции (см. также ) различают фильтры первого, второго и более высоких порядков. Крутизна ЛАЧХ фильтра 1-го порядка в полосе подавления равна 20 дБ на декаду, фильтра 2-го порядка — 40 дБ на декаду, и т. д.

По тому, какие частоты фильтром пропускаются (задерживаются), фильтры подразделяются на

  • фильтры нижних частот (ФНЧ)
  • фильтры верхних частот (ФВЧ)
  • полосно-пропускающие фильтры (ППФ)
  • полосно-задерживающие (режекторные) фильтры (ПЗФ)
  • фазовые фильтры

Поляризационные фильтры

Это, без сомнения, наиболее интересная группа фильтров.

Прежде всего, разберёмся, что такое поляризация. Световая волна, двигаясь в некоем направлении, совершает колебания в плоскости, проходящей через вектор направления её полёта. Как вы понимаете, через любой вектор, может проходить бесконечное количество плоскостей. Обычный неполяризованный свет, излучаемый каким-либо источником, например солнцем, содержит примерно одинаковое количество световых волн, ориентированных в каждой из бесчисленного множества воображаемых, взаимопересекающихся плоскостей. Если волны света ориентированы неравномерно, т.е. значительная часть волн колеблется в параллельных друг другу плоскостях, такой свет называется поляризованным.

Солнечный свет не поляризован, но он поляризуется, отражаясь от стекла, воды и прочих гладких неметаллических поверхностей, а также, прошу обратить особое внимание, от молекул воздуха. Поляризационный фильтр (PL, Polarizer) устроен таким образом, что пропускает световые волны только с определённой плоскостью поляризации

Точно так же, как и градиентный фильтр, поляризатор может поворачиваться в оправе, позволяя фотографу выбирать: какие световые волны попадут в объектив, а какие нет

Поляризационный фильтр (PL, Polarizer) устроен таким образом, что пропускает световые волны только с определённой плоскостью поляризации. Точно так же, как и градиентный фильтр, поляризатор может поворачиваться в оправе, позволяя фотографу выбирать: какие световые волны попадут в объектив, а какие нет.

Поворачивая поляризатор в оправе, можно подобрать положение, при котором он почти полностью блокирует отражённый поляризованный свет. Например, в пасмурную погоду вам не хочется, чтобы вода в лесном озере отражала скучное белесое небо. С помощью поляризационного фильтра вы можете исправить ситуацию, убрав отражение и сделав видимым дно водоёма вместе с камнями и водными растениями, что может очень оживить кадр.

Поляризатор часто используют, чтобы устранить блики на листьях деревьев, а также на мокрых камнях. Это может сделать цвета более насыщенными, но может и убить кадр, лишив сцену объёма, так что знайте меру – не всегда то положение фильтра, при котором его эффект максимален, будет самым уместным положением.

Наиболее популярное применение поляризационного фильтра – это получение тёмно-синего неба в ясную погоду. Молекулы воздуха, а также частицы пыли, отражая свет, поляризуют его. Это позволяет, отсекая часть поляризованных волн, притемнять небо, оставляя при этом яркость пейзажа неизменной.

Свет от неба поляризован неравномерно. Наиболее сильно эффект поляризации выражен если смотреть под прямым углом к солнцу, и практически полностью отсутствует вокруг солнца, а также на противоположном солнцу участке неба. Отсюда два вывода: во-первых, при съёмке с поляризатором наиболее выгодны такие позиции, при которых солнце находится сбоку от вас, а во-вторых, следует быть исключительно внимательным, если вы используете поляризатор вместе с широкоугольным объективом. Если кадр включает в себя большой участок неба, то из-за разной степени поляризации света вы рискуете получить в небе тёмную полосу, выглядящую крайне неестественно, и с головой выдающую вашу неудачную попытку обмануть законы природы.

Не забывайте, что поляризационный фильтр крадёт у вас около двух ступеней экспозиции, т.е. при прочих равных условиях заставляет использовать в четыре раза более длинную выдержку. Это означает, что снимать через поляризатор, держа камеру в руках, вы сможете только в солнечную погоду. В тени или же в вечернее время штатив может оказаться отнюдь не бесполезным.

Следует, пожалуй, упомянуть, что поляризационные фильтры бывают линейными и круговыми (C-PL, Circular Polarizer). Не буду вдаваться в технические подробности, но знайте, что автофокус и экспозамер современных камер адекватно работает только с фильтрами, обеспечивающими круговую поляризацию. Беспокоиться по этому поводу не стоит – все поляризаторы, выпускающиеся в XXI веке, круговые, и отыскать неправильный фильтр в настоящее время не так-то просто.

Цветные фильтры

Значимость этих фильтров для фотографа сильно колеблется в зависимости от материала, на который он снимает.

При работе с чёрно-белой плёнкой цветные светофильтры исключительно важны, поскольку, пропуская одни лучи и задерживая другие, позволяют изменять тональные отношения между предметами, а так же управлять контрастом.

При использовании цветных слайдов фильтры необходимы для коррекции цветового баланса плёнки и получения естественных цветов при различном освещении.

Если же ваш основной инструмент – цифровая камера, цветные фильтры вам абсолютно ни к чему. Баланс белого позволяет производить гораздо более смелые манипуляции с цветом, чем любые фильтры. А работа с индивидуальными цветовыми каналами при чёрно-белой конвертации снимков даёт даже больший творческий простор, чем цветные светофильтры в традиционной фотографии.

Квадратные фильтры (и системы фильтров)

А что насчет тех квадратных кусочков стекла, которыми пользуются некоторые пейзажные фотографы? Это тоже фильтры, обычно – ND или GND, но существуют и квадратные поляризаторы (это звучит странно, ведь, с технической точки зрения, они называются квадратными циркулярными поляризаторами). Зачастую фотографы устанавливают стандартный поляризационный фильтр на одной из сторон квадратного держателя, чтобы иметь для него возможность независимого регулирования.

Фильтры: какие действительно нужны?

Квадратные держатели фильтров прикрепляются к объективу при помощи специальных адаптеров, подходящих под размер резьбы.

Преимущество такой системы в том, что не нужно прикручивать и откручивать фильтры. Вы просто вставляете квадратный кусочек стекла и вынимаете его, когда нужно. Либо, в случае с большинством моделей, просто откидываете держатель, компонуете кадр и фокусируетесь, а затем закидываете его обратно. Это может сохранить огромное количество времени при работе с плотными ND-фильтрами, ведь с ними почти невозможно увидеть что-либо сквозь видоискатель.

Я в основном использую именно этот тип и очень его люблю, хотя во многом всё зависит от личных предпочтений. Многие потрясающие фотографы отдают предпочтение исключительно круглым фильтрам, поэтому вам нужно самостоятельно определиться с видом, который лучше подходит. Есть множество хороших держателей для квадратных фильтров от компаний Lee Filters, Cokin, Breakthrough Photography, а также недорогая версия от The Filter Dude.

Фильтры: какие действительно нужны?

Виды и характеристики салонных фильтров для автомобилей

Фильтры: какие действительно нужны?

Салонные фильтры устанавливаются непосредственно в салоны грузовых и легковых автомобилей с целью очищения воздуха от вредных химических примесей и углекислого газа, частиц абразивов и прочей грязи. Все это «разнообразие» попадает в салон по воздуховодам и при большом скоплении начинает угрожать здоровью водителя и пассажиров.

Салонные фильтры очищают воздух не только от токсичных веществ, но и от более крупных частиц: пыли, резины и сажи

Однако, приобретая фильтр, стоит обращать внимание не на этот показатель, а на способность улавливать самые трудноуловимые примеси воздуха, так как справиться с крупными частицами может даже простой фильтр

В выхлопных газах очень много вредных химических соединений, которые в повышенной концентрации могут привести к серьезным хроническим заболеваниях верхних дыхательных путей, почек, печени и сердца. Даже непродолжительная поездка в салоне с таким воздухом легко оборачивается пару днями сильнейшей головной боли. Что уж говорить о водителях-дальнобойщиках, которые на трассе проводят почти круглые сутки.

Чтобы обезопасить себя от последствий вдыхания нечистого воздуха с вредными примесями, пылью, смолами и резиной, отнеситесь к выбору салонного фильтра с особой тщательностью.

Фильтры для салонов делятся на два вида: на обычные противопылевые и на варианты с активированным углем – они устраняют именно углекислоту в воздухе, абсорбируют запахи и вредные химические соединения. Простые же салонные фильтры очищают воздух лишь от сажи и пыли. Фильтрующим элементом в них является бумага или синтетическое волокно – эти материалы удерживают частицы размером до 1 микрона.

Минусы салонных фильтров без активированного угля: неспособность удерживать угарный газ и токсичные соединения. А также неспособность абсорбировать неприятные запахи.

Виды цифровых фильтров

КИХ-фильтры

Фильтр с конечной импульсной характеристикой (нерекурсивный фильтр, КИХ-фильтр) — один из видов электронных фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Знаменатель передаточной функции такого фильтра — некая константа.

БИХ-фильтры

Фильтр с бесконечной импульсной характеристикой (рекурсивный фильтр, БИХ-фильтр) — электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образует обратную связь.Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры могут быть как аналоговыми так и цифровыми.

Нейтральный градиентный фильтр (GND)

Это фильтр, одна половина которого – ND-фильтр, а вторая – чистое стекло. Они выпускаются в разных вариантах, варьирующихся от постепенного к более резкому переходу между половинками. Эти фильтры используются, когда одна часть вашего снимка светлее, чем другая (например, небо и земля при пейзажной съемке).

Недостаток таких фильтров в том, что они полезны только при идеально плоском горизонте. Если что-либо выделяется, например, гора или дерево, оно также затемнится. GND-фильтры – еще один пережиток пленочной эпохи и кадры с высоким динамическим диапазоном намного лучше можно передать при помощи брекетинга экспозиции и использования такого ПО, как Photoshop.

Устройство и схема

Схема сетевого фильтра достаточно проста. Для того чтобы понять, как работает этот прибор, необходимо понять, как можно погасить скачкообразные помехи в сети. К примеру, резисторы. Сопротивление этих приборов не зависит от силы тока, который проходит через них. Но вот индуктивность и емкость прямо пропорциональны току. То есть, получается так, что чем выше сила тока и напряжение, тем больше вырастает сопротивление катушки индуктивности.

Это качество и применяется в фильтрах для подавления краткосрочных скачков напряжения с большой ее величиной. Для этого всего лишь необходимо установить две катушки индуктивности в фазный и нулевой проводник. Кстати, их индуктивность может располагаться в достаточно широком диапазоне от 60 до 200 мкГн.

Фильтры: какие действительно нужны?
Внутреннее устройство сетевого фильтра

Что касается резисторов, то их тоже можно устанавливать в сетевой фильтр для компьютера или телевизора.

Специалисты считают, что среди всех предлагаемых моделей на сегодняшний день эффективными являются сетевые фильтры LC. Все дело в том, что в их конструкции кроме катушек индуктивности установлены и конденсаторы. Кстати, их емкость варьируется в пределах от 0,22 до 1,0 мкФ. При этом необходимо учитывать, что напряжение конденсатора должно быть почти в два раза выше напряжения сети. Это запас на случай высокого скачка.

Зачем такая сложная схема?

  • «L» – это катушка, которая будет выравнивать скачки тока.
  • «C» – это конденсатор, который будет гасить высокие скачки напряжения.

Возвращаемся к импульсным помехам. Их можно гасить с помощью специального полупроводникового элемента – варистора. По сути, это резистор, который в штатном режиме, то есть, при низком напряжении, обладает высоким сопротивлением и ток через себя не пропускает. Как только ток в сети поднимается до номинала (470 В) вариатора, он сбрасывает сопротивление и пропускает ток.

Фильтры: какие действительно нужны?
Схема сетевого фильтра

Итак, подведем итог. Сетевой фильтр для компьютера или другого бытового электронного прибора в своей конструкции должен содержать:

  • Соединенные последовательно две катушки.
  • Конденсатор, подключенный параллельно.
  • Варистор.
  • Резисторы.

Ультрафиолетовый (UV) фильтр

Такой вид чаще всего идет в комплекте при покупке камеры или объектива. Это древняя технология, которая уже устарела, но все еще держится на плаву, во многом из-за выгоды для продавцов. UV-фильтры изначально использовались при работе с пленкой. Пленка обычно разделялась на разные слои для красного, синего и зеленого. Синий слой был весьма чувствителен к ультрафиолетовому свету. Еще до появления цифровых камер большинство производителей фотопленок должны были в большей мере преодолеть эту проблему. Современные фотоаппараты полностью избавились от нее благодаря наличию внутренних фильтров, блокирующих ультрафиолет и инфракрасный свет. Что все это значит? На сегодняшний день UV-фильтры полностью потеряли смысл.

Зачастую, если в кадре или возле его границы присутствует источник света, UV-фильтр может усилить или создать блики. Это случается из-за добавления перед объективом дополнительного кусочка стекла, через который должен пройти свет. Вспомним еще то, что дешевые ультрафиолетовые фильтры снижают резкость и контраст фотографий. Так зачем же их использовать?

Причина, по которой многие используют UV-фильтры – защита объектива. Однако, даже это не так полезно, как может показаться. Если поискать в интернете различные тесты эффективности UV-фильтров в плане защиты объектива, станет понятно, наличие фильтра мало что меняет. Переднее стекло в объективе очень прочное и, конечно же, прочнее, чем UV-фильтр. Поэтому любая сила, которая может причинить вред, с легкостью разобьет фильтр и все равно навредит объективу.

Если вы обеспокоены тем, что можете поцарапать или уронить объектив, идеальный способ этого избежать – прочная бленда. В отличие от UV-фильтра, бленда сокращает блики, а не усиливает их. Если вопрос нанесения ущерба объективу очень важен, позаботьтесь о страховке. Это дороже, но тогда вы будете спать спокойно.

Вывод – ультрафиолетовый фильтр вам не нужен.

Каким должен быть размер фильтра?

Получается, что, если у всех объективов разный диаметр резьбы, нужно покупать отдельный фильтр для каждого? Конечно, нет! Очень частая практика среди фотографов (по крайней мере, продуманных) – купить фильтр для самого большого диаметра (можно даже заранее выбрать фильтр для объектива, который вы планируете купить в будущем). Когда у вас есть большой фильтр, его можно прикрепить на любой меньший объектив при помощи переходного кольца. Поскольку фильтр больше, чем отверстие объектива, он никаким образом не будет мешать изображению. Если воспользоваться таким методом, можно разумно распределить бюджет, купив один набор качественных фильтров и пару переходных колец вместо того, чтобы тратить кучу денег на фильтры разного размера или жертвовать качеством ради количества.

Помните, что в обратную сторону это не работает. Нельзя прикрутить меньший фильтр к объективу с большим диаметром резьбы при помощи переходного кольца. Он будет закрывать кадр.

Техническое устройство

Фильтры для жидкостей

Разновидности фильтров воды

  • Фильтр для воды — устройство, предназначенное для очистки воды от вредных веществ или микроорганизмов.
    • Фильтр аквариумный — устройство, предназначенное для очистки аквариумной воды.
    • Фильтр прудовый — устройство, предназначенное для очистки воды в искусственных водоёмах (прудах, ручьях, водопадах, садовых аквариумах). Прудовые фильтры обеспечивают механическую, биологическую и химическую фильтрацию воды.
  • Фильтр масляный — устройство, предназначенное для удаления загрязнений из моторных, трансмиссионных, смазочных масел и гидравлических жидкостей.
  • Фильтр топливный

    Фильтр-сепаратор топливный — устройство, предназначенное для очистки топлива от влаги и тяжелых соединений (например, парафинов).

     — устройство, предназначенное для отсеивания частиц пыли и ржавчины, во избежание попадания их в топливную магистраль и камеру сгорания.

  • Фильтр-пресс — аппарат периодического действия, предназначенный для разделения под давлением жидких неоднородных систем (суспензий, пульп) на жидкую фазу (фильтрат) и твёрдую фазу (осадок, кек).

Фильтры для газов

  • Фильтр воздушный — элемент (бумажный, матерчатый, войлочный, поролоновый, сетчатый или иной), который служит для очистки от пыли (обработки) воздуха, подаваемого в помещения системами вентиляции и кондиционирования или используемого в технологических процессах (например, при получении кислорода), в газовых турбинах, в двигателях внутреннего сгорания и др.
  • Фильтр рукавный — фильтр, применяемый для тонкой (20 мг/м3 и ниже) индустриальной очистки дымовых газов на различных производствах для снижения уровня выбросов в атмосферу NO2, SO2 и пыли.
  • Фильтр электростатический — фильтр, применяемый для базовой (30 — 50 мг/м3 и выше) индустриальной очистки дымовых газов на различных производствах для снижения уровня выбросов в атмосферу NO2, SO2 и пыли.
  • Фильтр сигаретный — фильтр, применяемый в сигаретах для уменьшения количества вдыхаемых курильщиком смол.
  • Фильтр газовый — фильтр, используемый в химической промышленности для очистки технологических газов от механических примесей.
  • HEPA — фильтр тонкой очистки воздуха.

Фильтры оптические

  • Фильтр световой — оптическое устройство, которое служит для подавления (выделения) части спектра в оптическом диапазоне.
  • Фильтр конфиденциальности — специальная плёнка, которая уменьшает углы обзора дисплея.

Фильтры в электронике

  • Фильтр в электронике — устройство, предназначенное для выделения желательных компонент спектра аналогового сигнала и подавления нежелательных.
  • Фильтр коаксиальный — электрический фильтр, состоящий из элементов (отрезков) коаксиального кабеля, предназначенный для селекции сигналов на дециметровом и сантиметровом диапазонах волн.
  • Фильтр цифровой — устройство для обработки дискретного во времени сигнала; в результате обработки спектральный состав сигнала меняется требуемым образом.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий