Электричество для детей — это не игрушка!
Нет необходимости включать электрические предметы если рядом нет родителей. Нельзя заниматься разбором приборов, даже если они не подключены к розеткам и малыш думает, что нужно поменять какую-либо детальку, например, лампу в светильнике. Как только чувствуешь запах гари, или что-то дымит и искриться, необходимо в обязательном порядке сказать взрослому, находящему рядом.
Также не следует опускать электрические приборы в воду, она же отличный проводник тока. На улице нужно вести себя корректно, нельзя трогать провода, которые висят на столбах уличных фонарей, или если они торчат из земной почвы, и ни в коем случае нельзя заходить в трансформаторную будку или открывать электрощиты.
Для безопасности детей не забывайте использовать разные примочки от ударов током, например, приобретите заглушки для розеток, или специальные крепления для кабеля, что является очень важным!
А ваши дети уже знают про пользу и опасность электрического тока?
Приглашаю почитать статью на блоге на тему электричества “Вилка и розетка: как обеспечить безопасность ребенка”.
Посмотрите ниже мультфильм о безопасном поведении.
https://youtube.com/watch?v=videoseries
Электрический ток
Электрический ток – упорядоченное движение заряженных частиц под действием электрического поля. В зависимости от среды материи (вещества) частицы могут быть разные: в металлах – электроны, в электролитах – ионы, в полупроводниках – электроны или дырки (электронно-дырочная проводимость).
Если говорить сильно упрощённо, то вся окружающая нас материя (всё, что мы видим вокруг) состоит из молекул. В свою очередь молекулы состоят из атомов. Сами атомы представляют из себя ядро (протоны и нейтроны) и вращающиеся вокруг него электроны. Для более наглядного понимания электрического тока возьмём обычную батарейку. Внутри неё протекает химическая реакция. В результате этого электроны переходят от одних атомов к другим. Поэтому получается, что атомы одного вещества (клемма «плюс») испытывают недостаток электронов, а атомы другого вещества (клемма «минус») избыток. То есть вещества клемм батарейки имеют разноимённые заряды. Если соединить их (клеммы) между собой проводником с нагрузкой, то электроны будут стремиться перейти из одного вещества в другое (от отрицательной клеммы к положительной). Это перемещение электронов и есть электрический ток. Он будет течь пока заряды веществ не уровняются.
В качестве проводника для передачи электрического тока сейчас в основном используют медные или алюминиевые провода. Возьмём, например, медную проволоку. В атоме меди вокруг ядра по четырём орбитам вращаются 29 электронов. Электроны, находящиеся на крайних орбитах, испытывают меньшую силу притяжения, чем их собратья, расположенные ближе к ядру. Поскольку атомы меди находятся очень плотно друг к другу, то дальние электроны испытывают силу притяжения не только своего, но и соседнего ядра. Они могут покинуть свой атом и перейти к другому. Такие электроны называют свободными. При подключении к проводнику внешнего электрического поля (например, батарейки) движение свободных электронов становится упорядоченным и направленным от «-» к «+» батарейки. В результате по цепи начинает течь постоянный электрический ток.
При рассмотрении принципа работы различных электронных схем принято использовать направление постоянного тока от плюса к минусу. Этот выбор изначально был сделан не очень корректно, так как в то время о движении свободных электронов ещё не знали. За направление тока условно приняли то направление, по которому могли бы двигаться в проводнике положительные заряды. В последующем этот выбор менять никто не стал.
В любом веществе атомы располагаются на расстоянии друг от друга. В меди, алюминии и других металлах эти расстояния очень малы. Электронные оболочки соседних атомов практически соприкасаются друг с другом. Это даёт возможность электронам переходить от одного атома к другому. Поэтому металлы и ряд других веществ называют «проводниками» электрического тока. Существуют вещества, где атомы располагаются на значительном расстоянии друг от друга. Их электроны не могут преодолеть силу притяжения ядра своего атома, а сила ядра соседнего атома (куда электрон может перейти) очень мала из-за относительно большого расстояния. Даже если к такому веществу подключить электрическое поле, то электрон всё равно останется у своего атома (электрический ток не потечёт). Подобные вещества называют «диэлектриками». Они не пропускают электрический ток.
Как объяснить ребенку про электричество
В 2-х или 3-х летнем возрасте маленьким человечкам становится интересным познавать окружающий мир со всех сторон, во всех красках. Детки задают множество вопросов на абсолютно разные темы – что, зачем, почему и откуда, как же оно работает и так далее? Естественно вопросы о работе электричества также очень естественные. Откуда оно появилось и куда обычно пропадает, когда мы включаем или выключаем свет, например.
И вопросы об электрическом токе также не останутся в стороне. Откуда появляется ток и куда девается, при щелчке по включателю? А как работает планшетный компьютер мамы без проводов? Очень большое количество вариантов, все не сосчитать!
Зажигаем лампочку
Концы нити накаливания лампочки соединены с деталями ее цоколя: один — с боковой поверхностью его корпуса, другой — с центральным контактом. Когда вы присоединяете лампочку к батарейке, вы создаете то, что называется электрической цепью. Цепь — это путь, по которому ток может течь от плюса батарейки к минусу.
Создаваемое батарейкой напряжение заставляет электроны двигаться по цепи, частью которой является нить накаливания лампочки. Нить обладает сопротивлением, ограничивающим силу тока в цепи. Когда электроны преодолевают сопротивление нити, она становится такой горячей, что начинает светиться, т.е. испускать свет.
Чтобы батарейка могла заставить электроны двигаться, цепь между ее выводами не должна иметь разрывов, т. е. должна быть замкнутой.
Чтобы электричество могло работать, всегда необходимы замкнутые цепи. Достаточно разомкнуть цепь — создать в ней хоть один разрыв в каком-либо месте, и лампочка сразу погаснет! Давайте рассмотрим электрические цепи более подробно.
Что такое единица измерения силы тока
Чтобы «посчитать» электрический ток, используются разные единицы измерения, разберем три основных:
- Сила тока.
- Напряжение.
- Сопротивление.
Если попытаться описать понятие силы тока простыми словами, лучше всего представить поток автомобилей, проходящих через тоннель. Автомобили — это электроны, а тоннель — провод. Чем больше автомобилей проходит в один момент времени через поперечное сечение тоннеля — тем больше сила тока, которая измеряется прибором под названием «амперметр» в Амперах (А), а в формулах обозначается буквой (I).
Напряжение — это относительная величина, выражающая разницу зарядов тел, между которыми идет ток. Если у одного объекта заряд очень высокий, а другого очень низкий, то между ними будет высокое напряжение, для измерения которого используют прибор «вольтметр» и единицы под названием Вольт (V). В формулах идентифицируется буквой (U).
Сопротивление характеризует способность проводника, условно медного провода, пропускать через себя определенное количество тока, то есть электронов. Оказывающий сопротивление проводник генерирует тепло, расходуя часть энергии проходящего через него тока, тем самым понижая его силу. Сопротивление вычисляют в Омах (Ом), а в формулах используют букву (R).
Формулы для вычисления характеристик тока
Применяя три физические величины, можно вычислять характеристики тока, используя Закона Ома. Он выражается формулой:
I=U/R
Где I — сила тока, U — напряжение на участке цепи, R — сопротивление.
Из формулы мы видим, что сила тока вычисляется путем деления величины напряжения на величину сопротивления. Отсюда мы имеем формулировку закона:
Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.
Из данной формулы математическим путем можно вычислить другие ее составляющие.
Сопротивление:
R=U/I
Напряжение:
U=I*R
Важно отметить, что формула действительна только для конкретного участка цепи. Для полной, замкнутой цепи, а также других частных случаев есть другие законы Ома
Видео сюжет
https://youtube.com/watch?v=1RAXal-5S98
Общее·количество·просмотров·страницы
Когда появилось электричество на территории России
Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.
Энергетика России 2018
Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года. Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.
В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.
После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.
https://youtube.com/watch?v=Ep2ySnuRVPU
Ответы на главные вопросы об электрическом токе
После формулировки определения, возникает несколько логичных вопросов.
- Что заставляет ток «течь», то есть перемещаться?
- Если мельчайшие элементы металла постоянно перемещаются, то почему он не деформируется?
- Если что-то перетекает из одного объекта в другой, то меняется ли масса этих объектов?
Ответ на первый вопрос прост. Как вода течет с высокой точки в низкую — так и электроны будут течь из тела с высоким зарядом в тело с низким, повинуясь законам физики. А «заряд» (или же потенциал) — это количество электронов в теле, и чем их больше — тем заряд выше. Если между двумя телами с разными зарядами будет проложен контакт — электроны из более заряженного тела потекут в менее заряженное. Так возникнет ток, который закончится тогда, когда заряды двух контактирующих тел уравняются.
Чтобы понять, почему провод не меняет структуру, несмотря на то, что в нем постоянно происходит движение, нужно представить его в виде большого дома, в котором живут люди. Размер дома не будет меняться о того, сколько людей в него заходят и выходят, а также перемещаются внутри. Человек в данном случае аналог электрона в металле — он свободно перемещается и не имеет особой массы по сравнению с целым зданием.
Если электроны перемещаются из одного тела в другое — почему масса тел не меняется? Дело в том, что вес электрона настолько мал, что, даже если удалить из тела все электроны, его масса не изменится.
История открытия
Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.
В начале 18 века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.
Это явление получило название лейденской банки.
Важно! Ученый Б. Франклин первым предположил, что существуют положительные и отрицательные заряды
Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод, действие которого пояснялось возникновением разности напряжений.
А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.
Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым законе электромагнитной индукции.
Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:
- 1791 г. — ученый Л. Гальвани открыл движение зарядов по проводникам, т.е. электрический ток,
- 1800 г. – представлен генератор тока А. Вольтом,
- 1802 г. — Петров открыл электродугу,
- 1827 г. — Дж. Генри сконструировал изоляцию проводов,
- 1832 г. — член академии Петербурга Шиллинг показал электрический телеграф,
- 1834 г. — академик Якоби создал электродвигатель,
- 1836 год — С. Морзе запатентовал телеграф,
- 1847 г. — Сименс предложил резиновый материал для изоляции проводов,
- 1850 год — Якоби изобрел буквопечатающий телеграф,
- 1866 г. — Сименс предложил динамо-машину,
- 1872 г. — А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить,
- 1876 г — изобретен телефон,
- 1879 год — Эдисон разработал систему электроосвещения, используемую до сих пор,
- 1890 год — стал стартовым относительно широкого применения электроприборов в быту,
- 1892 г. — появились первые бытовые приборы, используемые хозяйками на кухне,
Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.
Первые опыты с электричеством
Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд. С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.
Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В
Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.
Проект: охранная сигнализация
Выключатель можно сделать из самых разных вещей — даже из двери. В этом проекте вы превратите дверь в огромный выключатель, чтобы создать охранную сигнализацию, которая будет издавать предупредительный сигнал каждый раз, когда кто-нибудь попытается войти в комнату.
Чтобы создать такую сигнализацию, нужно прикрепить к двери несколько проводов и полоску алюминиевой фольги таким образом, чтобы при закрытой двери цепь была разомкнутой и ничего не происходило, а при открывании двери цепь замыкалась, включая зуммер.
Над дверью мы повесим оголенный (неизолированный) провод, а на верхний край двери наклеим полоску фольги и соединим эти элементы с разными концами электрической цепи, в состав которой входит зуммер. При открывании двери свисающий оголенный провод коснется фольги и тем самым замкнет цепь, заставив зуммер звучать.
Материалы и инструменты:
- Зуммер. Зуммеры бывают пассивными и активными. Пассивным нужен входной сигнал звуковой частоты, а активным — только напряжение. Для этого проекта вам понадобится активный зуммер, который работает от напряжения 9–12 В (например, KPIG2330E от KEPO. Подойдет также зуммер, который продается в магазинах автозапчастей под названием «Индикатор звуковой (повторитель)» или «Звуковой повторитель поворотов», рассчитанный на напряжение 12 В).
- Стандартная батарейка 9 В для питания цепи.
- Разъем для подключения батарейки к цепи (колодка или клемма для «Кроны» с проводами).
- Алюминиевая фольга.
- Неизолированный провод. Подойдут гибкая медная проволока без изоляции (не перепутайте с обмоточным эмалированным проводом, такой не годится), старая гитарная струна или что-нибудь подобное.
- Лента для крепления всех элементов. Это может быть изолента, скотч и т.п.
- Кусачки (бокорезы) для обрезания проволоки и удаления изоляции с проводов.
- Ножницы (не обязательны). Ими удобно резать фольгу.
Шаг 1. Проверка зуммера. Прежде всего проверьте, работает ли зуммер. Прижмите его красный провод к положительному (+) выводу батарейки, а его черным проводом коснитесь ее отрицательного (—) вывода. Зуммер должен издать громкий звук. Если отсоединить любой из его проводов от батарейки, звук должен прекратиться, поскольку цепь будет разомкнута.
Шаг 2. Подготовка фольги. Отрежьте ножницами полоску фольги шириной около 2,5 см и длиной во всю ширину рулона.
Шаг 3. Закрепление фольги на двери. Закрепите оба конца полоски фольги на верхнем крае двери двумя кусочками клейкой ленты. Эта полоска будет служить контактом для проводов от батарейки и зуммера.
Шаг 4. Подготовка контактного провода. Возьмите кусок неизолированного провода длиной около 25 см.
Шаг 5. Соединение зуммера с контактным проводом. Соедините один конец контактного провода с оголенным концом черного провода разъема для подключения батарейки. Сделать это просто: скрутите вместе неизолированные концы этих проводов и обмотайте скрутку куском изоленты.
После этого тем же способом соедините красный провод разъема для подключения батарейки с красным проводом зуммера.
Шаг 6. Установка зуммера и контактного провода. Теперь установите зуммер и контактный провод над дверным проемом. Сначала клейкой лентой прикрепите контактный провод к притолоке двери таким образом, чтобы, когда дверь закрыта, он свисал перед дверью, а при ее открывании ложился на полоску фольги.
Теперь клейкой лентой закрепите над притолокой зуммер так, чтобы его черный провод мог касаться полоски фольги на двери. Неизолированный конец этого провода прикрепите клейкой лентой к фольге.
Шаг 7. Подключение источника питания. Закрепите над дверью батарейку и подключите к ней разъем. Теперь ваша сигнализация должна выглядеть примерно так:
Шаг 8. Проверка сигнализации. Проверьте работу сигнализации. При открывании двери оголенный контактный провод должен коснуться фольги на двери, включив тем самым зуммер, который издаст громкий звук. Чтобы проверка была более достоверной, попросите кого-нибудь другого открыть дверь.
Шаг 9. Если сигнализация не работает. Если при открывании двери зуммер не включается, надо попытаться отрегулировать положение контактного провода так, чтобы при открывании двери он точно касался фольги. Если касание происходит правильно, попробуйте заменить батарейку. Если и это не поможет, проверьте соединения проводов разъема батарейки с проводами схемы и, если понадобится, выполните их заново.
Простыми словами об электрическом токе
Стандартное определение из школьного учебника по физике лаконично описывает явление электрического тока. Но если говорить откровенно, то полноценно понять это можно, если изучить предмет гораздо глубже. Ведь информация изложена на другом языке — научном. Гораздо легче разобраться в природе физического явления, если описать все привычным языком, понятному любому человеку. Например, ток в металле.
Начать следует с того, что все, что мы считаем твердым и неподвижным, является таким только в нашем представлении. Кусок металла, лежащий на земле — это монолитное неподвижное тело в человеческом понимании. Для аналогии представим нашу планету в космосе, взглянув на нее с поверхности Марса. Земля кажется целостным, неподвижным телом. Если же приблизиться к ее поверхности, то станет очевидно, что это не монолитный кусок материи, а постоянное движение: вода, газы, живые существа, литосферные плиты — все это безостановочно перемещается, хотя из далекого космоса этого и не видно.
Вернемся к нашему лежащему на земле куску металла. Он неподвижен, потому что мы смотрим на него со стороны как на монолитный объект. На атомном же уровне он состоит из постоянно движущихся мельчайших элементов. Они бывают разные, но среди всех, нам интересны электроны, которые и создают в металлах электромагнитное поле, порождающее тот самый ток. Слово «ток» нужно понимать буквально, потому что когда элементы с электрическим зарядом перемещаются, то есть «текут», из одного заряженного объекта в другой — тогда и происходит «электрический ток».
Разобравшись с основными понятиями, можно вывести общее определение:
Электрический ток — это поток заряженных частиц, движущихся из тела с более высоким зарядом в тело с более низким зарядом.
Чтобы еще точнее понять суть, нужно углубиться в детали и получить ответы на несколько основных вопросов.
Видео сюжет
Современное электричество
Сегодня без электричества трудно представить существование человечества. К тому же с ростом технологических мощностей одним из актуальных вопросов становится ‒ откуда брать электричество. Поэтому в мире строятся и работают множество различных электростанций. Не считая солнечные, все остальные производят электрический ток с помощью генераторов, а вот вращаются эти генераторы благодаря различным силам.
Принцип работы различных видов электростанций:
- гидроэлектростанция – вращение происходит за счет прохождения потока воды через турбину (лопасти);
- ветряная электростанция – вращение происходит за счет ветра, раскручивающего лопасти пропеллера;
- теплоэлектростанция – сжигается топливо, нагревая воду и превращая ее в пар. В свою очередь, пар под давлением проходит через турбину и вращает лопасти, а вращение передается генератору;
- атомная электростанция – принцип тот же, что и у тепловой, только вода нагревается не сгоранием топлива, а замедленной ядерной реакцией.
Вот откуда в наш дом приходит электричество. Правда на своем пути стремительные электроны проходят еще много различных установок, электрических станций и подстанций, где преобразовывается напряжение, распределяется мощность и др. Объяснить для детей откуда берется электричество можно проще, сказав, что это невидимая сила, получаемая из самой природы – течения рек, дуновения ветра, огня. При этом обязательно нужно предупредить, что электрический ток – опасен и не прощает шалостей, поэтому от розеток лучше держаться подальше.
Кто изобрел электричество
Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.
Эксперимент Бена Франклина
Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.
В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.
Русский ученый и инженер А. Н. Лодыгин
В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.
Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла
Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.
Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.
Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.
Электродуговая лампа П.Н.Яблочкова
История
То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.
История открытия
Сегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.э. древние греки обнаружили, что потирание меха на янтаре вызывает притяжение между ними. Это явление демонстрирует статическое электричество, которое полностью описали ученые в 17 веке в пояснениях, как появляется электричество.
Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.
Кто изобрёл электричество
К 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.
Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом. Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта
Электрический стенд для детей — детали и процесс изготовления
Для изготовления стенда в моем варианте понадобятся следующие материалы:
1. Пластиковое ведро
2. Компьютерный вентилятор от процессора
3. Два выключателя с фиксацией, один кнопочный выключатель
4. Четыре светодиода
5. Провода, обрезок гибкой проволоки длинной около 0,5 м и диаметром 1-2 мм.
6. Батарейка «крона»
7. Пластиковая бутылка на 1,5 литра
Из инструментов потребуется — дрель, паяльник, шило, пассатижи, бокорезы, канцелярский нож.
Сначала размечаем крепления для вентилятора (я разместил его на верху по центру). Затем крепим вентилятор (можно шурупами, можно, как у меня с помощью гибкой проволоки). По краям делаем отверстия для светодиодов и выключателей. У меня в процессе изготовления активно участвовал сын, а я ему в это время рассказывал, для чего нужна каждая деталь и что нужно будет сделать, чтобы все заработало.
Сын размечает отверстия для кулера
Светодиоды я разместил по краям на верхней части ведра. Под них сверлил отверстия, а потом приклеил изнутри чтобы не выпадали.
Самое интересное для моего ребёнка было конечно разбираться старую нашу игрушку. В ней уже трещины были настолько большими, что не получалось восстановить, да и вид уже потерялся. Хорошо, что вся электрическая часть осталась в норме, поэтому я просто перенес детали в новый корпус.
Разбираем старую игрушку — вот это интересно
После светодиодов я закрепил выключатели и с обратной стороны, припаял провода. Выключатели у меня были со встроенными лампочками и я сделал так, чтобы при включении лампочка на самом выключателе тоже загоралась.
Для включения кулера я использовал кнопочный выключатель, потому как дети редко выключают игрушку, а так — нажал на кнопку работает, отпустил — выключилось
Батарейку я использовал аккумуляторную по тем же причинам (дети ее быстро разряжают), оказалось дешевле, чем каждый раз покупать новую. Для подключения батарейки «крона» я использовал специальный переходник, который крепится на батарейку и позволяет легко отключать и подключать батарейку.