Что такое эдс индукции и когда возникает?

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

Что такое эдс индукции и когда возникает?

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

4.1. Опыты Фарадея. ЭДС индукции

а б

Рис. 4.1. Схемы опытов Фарадея

В 1831г. Фарадей открыл явление электромагнитной индукции, заключающееся в возникновении тока под действием переменного магнитного поля. Схема опытов Фарадея приведена на рис. 4.1. Он установил, что ток в первой катушке возникает: при движении по­стоянного магнита относительно катушки (рис.4.1а

); при изменении тока во второй катушке (рис.4.1б ); при движении катушек относительно друг друга (во второй при этом существует постоянный ток). Чем быстрее движется магнит или вторая катушка, тем больше сила тока. Отсюда можно было сделать вывод:в замкнутом контуре возникает ток при изменении потока магнитной индукции, пронизывающего контур . Это означает, что в контуре возникает ЭДС индукции:

. (4.1)

ЭДС индукции

равна скорости изменения магнитного потока, пронизывающего контур (точнее, производной от потока по времени). Если в контуре имеетсяN витков с плотной намоткой, то индуцированные в каждом витке ЭДС будут складываться, и формула (4.1) при­нимает вид:

. (4.2)

Рис.4.2. Демонстрация правила Ленца

Знак (-) в правой части формул отражает правило Ленца

:возникающий в замкнутом контуре ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван (т. е. противодействует причине, его породившей). На рис. 4.2 показан опыт с внесением магнита в замкнутое кольцо. Возникающий в кольце индукционный ток создает магнитное поле, препятствующее внесению магнита, и отталкивает кольцо от магнита. При внесении магнита в разрезанное кольцо эффект отсутствует.

Посмотрим, что происходило бы, если бы правило Ленца не выполнялось. Индук­ционный ток в этой ситуации создавал бы магнитный поток, направление которого совпадало бы с исходным изменением; возрастающее изменение потока привело бы к еще большему увеличению индукционного тока, что сопровождалось бы еще большим изменением потока. В результате ток продолжал бы нарастать до бесконеч­ности, выделяя мощность (Р=I2R) даже после прекра­щения первоначального изменения. Это означало бы на­рушение закона сохранения энергии. Таким об­разом,правило Ленца является следствием закона сохранения энергии .

Поскольку ЭДС определяется как циркуляция напряженности электрического поля сторонних сил (см. раздел 2.1), возникновение ЭДС индукции можно трактовать как появление вихревого электрического поля, способного перемещать заряды в замкнутой цепи.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

Электродвигатели и генераторы

Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.

По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.

В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.

Еще немного теории

При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:

I=E/(R+r),

где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.

Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.

При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме

При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Что такое эдс индукции и когда возникает?

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Что такое эдс индукции и когда возникает?

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Что такое эдс индукции и когда возникает?

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Что такое эдс индукции и когда возникает?

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Что такое электродвижущая сила

Подробно этот вопрос мы рассмотрели в отдельной статье: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

Что такое эдс индукции и когда возникает?

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

I=U/R,

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

I=E/(R+r),

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

Что такое эдс индукции и когда возникает?

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

I1=E/(R1+r)

I2=E/(R2+r)

При этом:

R1=U1/I1

R2=U2/I2

Если подставить в первые уравнения, то:

I1=E/( (U1/I1)+r)

I2=E/( (U2/I2)+r)

Теперь разделим левые и правые части друг на друга:

(I1/I2)= [E/( (U1/I1)+r)]/[E/( (U2/I2)+r)]

После вычисления относительно сопротивления источника тока получим:

r=(U1-U2)/(I1-I2)

Внутреннее сопротивление r:

r= (U1+U2)/I,

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

Что такое эдс индукции и когда возникает?

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Что такое эдс индукции и когда возникает?

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд. Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный Φ, пронизывающий контур или катушку с током, пропорционален силе тока I

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукциииндуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна или 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Рисунок 1.21.1.
Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt.

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I до 0. Это дает

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.
Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.