Дисперсия света

Свет и цвет

Сложной структурой белого света объясняется многообразие красок в окружающем нас мире. Из-за того что световые лучи разного цвета по-разному отражаются от предметов или поглощаются ими, мы и видим мир цветным.

Помните выражение: «Все кошки ночью серые»? А ведь это действительно так. В темноте цвет различить невозможно. Там, где нет света, все предметы кажутся нам чёрными. Но стоит только направить на кошку луч света, как она сразу же приобретёт цвет.

Цвет предмета — это цвет отражённой волны спектра. Белые предметы отражают все цвета, поэтому мы и видим их белыми. Чёрные, наоборот, все цвета поглощают и не отражают ничего. Траву мы видим зелёной, потому при солнечном свете она отражает зелёный цвет, а все остальные поглощает. Банан жёлтый, потому что отражает жёлтый цвет и т.д.

  • < Назад
  • Вперёд >

Исследования предшественников Ньютона

Аристотелевскую теорию взаимодействия темноты и света не опровергли и ученые 16-17 веков. И чешский исследователь Марци, и английский физик Хариот независимо друг от друга проводили опыты с призмой и были твердо уверены в том, что причиной появления разных оттенков спектра является именно смешивание светового потока с темнотой при прохождении его через призму. На первый взгляд, выводы ученых можно было назвать логичными. Но их эксперименты были достаточно поверхностными, и они не смогли подкрепить их дополнительными исследованиями. Так было, пока за дело не взялся Исаак Ньютон.

Дисперсия света

Радуга

Дисперсия света

Двойная радуга

В том случае, если свет внутри дождевой капли преломляется только один раз, появляется так называемая первичная радуга. Однако при двух отражениях на небе появляется двойная радуга, которая представляет собой более редкое природное явление. Та радуга, диаметр которой меньше, более яркая и обладает стандартным порядком цветов. Вторая радуга, напротив, менее заметна и обладает обратным порядком цветов спектра. Таким образом, необычно красивое явление радуги после дождя можно объяснить простыми физическими законами.

Опыт Ньютона.

Классический опыт по наблюдению дисперсии был поставлен Ньютоном. Узкий луч солнечного света направлялся на треугольную стеклянную призму (рис. 1).

Дисперсия света
Рис. 1. Разложение белого света в спектр

На экране за призмой появлялся спектр — радужная полоса. Один край спектра оказался красным, другой — фиолетовым, а цвета внутри спектра непрерывно переходили друг в друга.

Выделяя луч какого-либо цвета (например, красного или синего) и запуская его в другую призму, мы уже не увидим изменения цвета преломлённого луча. Стало быть, компоненты радуги являются простейшими цветами, не разложимыми далее. Их можно собрать обратно с помощью второй призмы, и тогда снова получится белый свет. Следовательно, белый свет является смесью световых пучков различных цветов, непрерывно заполняющих диапазон видимого света от красного до фиолетового.

Мы видим, таким образом, что стеклянная призма является простейшим спектральным прибором — она позволяет исследовать спектральный состав белого света. С действием более сложного спектрального прибора — дифракционной решётки — мы познакомились в предыдущей теме.

Как показывает опыт Ньютона, слабее всего преломляется красный свет, а сильнее всего — фиолетовый. В видимом диапазоне красный свет имеет наименьшую частоту, а фиолетовый — наибольшую. Коль скоро показатель преломления становится всё больше по мере движения от красного конца спектра к фиолетовому, мы делаем вывод, что показатель преломления стекла увеличивается с возрастанием частоты света.

Но показатель преломления есть отношение скорости света в воздухе к скорости света в среде: . Значит,чем больше частота света, тем с меньшей скоростью свет распространяется в стекле. Наибольшую скорость внутри стеклянной призмы имеет красный свет, наименьшую — фиолетовый.

Различие в скоростях света для разных частот проявляется только при наличии среды. В вакууме скорость распространения электромагнитных волн не зависит от частоты и равна .

Открытая и исследованная Ньютоном, дисперсия света больше двухсот лет ждала своего объяснения — нужны были соответствующие сведения о строении вещества. Классическая теория дисперсии была предложена Лоренцем лишь в конце XIX века. Более точная квантовая теория дисперсии появилась в первой половине прошлого столетия.

Дисперсия света

Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму. Дисперсия света выражается следующим равенством:

n = ƒ (ƛ),

где n – показатель преломления, ƛ – частота, а ƒ – длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе. Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.

Дисперсия света

Что такое дисперсия света

Разложение белого света на цвета называют дисперсией света.

Для знакомства с этим явлением проведём простой опыт. Направим узкий луч белого света на прозрачную трёхгранную призму из стекла, расположенную в тёмной комнате. Пройдя сквозь грани призмы, луч преломится дважды и отклонится. Кроме того за призмой вместо одного белого луча мы увидим семь разноцветных, окрашенных в те же цвета, что и радуга, лучей, расположенных в той же последовательности. Причём окажется, что сильнее всего преломился фиолетовый луч, а меньше всего красный. То есть, угол преломления зависит от цвета луча.

Если на пути цветового спектра поместить другую призму, повёрнутую на 180° относительно первой, то пройдя через неё, все цветовые лучи снова соберутся в луч белого света.

Опыт с прохождение белого света через призму первые провёл Исаак Ньютон. Он же объяснил, что цвет — это собственное свойство света.

Из своего опыта Нютон сделал 2 вывода:

  1. Белый свет имеет сложную структуру. Он состоит из потока частиц разного цвета.
  2. Все эти частицы движутся с разной скоростью, поэтому лучи разного цвета и преломляются на разный угол. Самая высокая скорость у частиц красного цвета. Он преломляется через призму меньше всех других цветов. Чем меньше скорость, тем больше показатель преломления.

Именно Ньютон разделил цветовой спектр на 7 цветов, потому что считал, что существует связь между цветами и музыкальными нотами, которых тоже 7, семью днями недели и семью объектами Солнечной системы (во времена Ньютона были известны только 7 планет: Меркурий, Венера, Земля, Луна, Марс, Сатурн, Юпитер), семью чудесами света. Правда, в спектре Ньютона синий цвет назывался индиго.

Чтобы легче было представить последовательность цветов в спектре, достаточно запомнить фразу, в которой заглавные буквы совпадают с первыми буквами наименований цветов: «Каждый Охотник Желает Знать, Где Сидит Фазан».

В общем смысле спектром в физике называют распределение значений физической величины (энергии, массы или частоты).

Изучение явления

Спектральный прибор

Дисперсия светаДисперсия света

Спектральный прибор

Видимый белый свет включает монохроматические волны, обладающие разной длиной. Совокупность таких волн называют световым спектром, а прибор, при помощи которого изучают дисперсию света, именуется спектральным. Так, простейшим спектральным прибором, при помощи которого можно произвести разложение света в спектр, является стеклянная призма. Математически явление дисперсии света определяется как зависимость преломления того или иного вещества от длины световой волны.

Дифракционная решетка

Дисперсия света

Дифракционная решетка на лазер

Для более детального изучения явления дисперсии света были изобретены дифракционные решётки. Эти приборы состоят из большого количества щелей и выступов, которые в периодической последовательности наносятся на специальные (стеклянные или металлические) поверхности. Благодаря применению высоких технологий, удалось создать такие дифракционные решётки, которые на каждом миллиметре своей структуры содержат около 2000 штрихов. Существуют также более грубые дифракционные решётки, содержащие всего лишь 100 штрихов на 1 миллиметр. Однако следует отметить, что функцию этого прибора могут выполнять такие обыденные предметы, как граммофонная пластинка или компакт-диск.

Низкодисперсные линзы

В фототехнике дисперсия света считается нежелательным явлением. Она становится причиной так называемой хроматической аберрации, при которой на изображениях появляется искажение цветов. Оттенки фотографии при этом не соответствуют оттенкам снимаемого объекта. Особенно неприятным такой эффект становится для фотографов-профессионалов. Из-за дисперсии на фотоснимках не только происходит искажение цветов, но и нередко наблюдается размытие краев или, наоборот, появление чересчур очерченной каймы. Мировые производители фототехники справляются с последствиями такого оптического явления с помощью специально разработанных низкодисперсных линз. Стекло, из которого они производятся, обладает великолепным свойством одинаково преломлять волны с разными значениями длины и частоты. Объективы, в которых устанавливаются низкодисперсные линзы, называются ахроматами.

Хроматическая аберрация.

]Предположим, что на собирающую линзу параллельно главной оптической оси падает пучок белого света. Преломляясь в линзе, он, казалось бы, должен собраться в её фокусе. Однако вследствие дисперсии возникает хроматическая аберрация — некоторая расфокусировка пучка, вызванная различной преломляемостью разных компонент белого света.

Явление хроматической аберрации показано на рис. 2.

Дисперсия света
Рис. 2. Хроматическая аберрация

Показатель преломления материала линзы принимает наименьшее значение для красного света, и потому красный свет преломляется слабее всего. Красные лучи собираются на главной оптической оси в наиболее удалённой от линзы точке. Жёлтые лучи собираются ближе к линзе, зелёные — ещё ближе, и, наконец, в ближайшей к линзе точке сойдутся фиолетовые лучи.

Хроматическая аберрация ухудшает качество изображений — снижает чёткость, даёт лишние цветные полосы. Но с хроматической аберрацией можно бороться. Для этого в оптической технике применяют так называемые ахроматические линзы, получаемые накладыванием на собирающую линзу дополнительной рассеивающей линзы. Догадайтесь — зачем нужна рассеивающая линза?

Цветовой спектр

Белый свет, доступный для человеческого зрения, – это совокупность нескольких волн, любая из которых характеризуется определенной частотой и собственной энергией фотонов. В соответствии с этим его можно разложить на волны разного цвета. Каждая из них носит название монохроматической, а определенному цвету соответствует свой диапазон длины, частоты волн и энергии фотонов. Другими словами, энергия, излучаемая веществом (или поглощаемая), распределяется по вышеназванным показателям. Это объясняет существование светового спектра. Например, зеленый цвет спектра соответствует частоте, находящейся в диапазоне от 530 до 600 ТГц, а фиолетовый – от 680 до 790 ТГц.

Дисперсия света

Открытие Ньютона

Конечно, первым, кто экспериментально доказал и описал зависимость преломления светового потока от длины волны, был Исаак Ньютон. С 1666 года он активно занимался изучением явления преобразования бесцветного диапазона.

Дисперсия света

В солнечный день ученый затемнил комнату и оставил только небольшой просвет в окне, через который проходила тонкая полоска солнца. Ньютон поставил треугольную хрустальную призму, чтобы на нее попадал луч. Пройдя через прозрачный хрусталь, белый свет превратился в ряд разноцветных полос.

Сегодня для опытного наблюдения разложения диапазона применяют дифракционные решетки. Это стеклянные пластины с нанесенными бороздками и тонкими отверстиями. С помощью них можно наблюдать разложение не только цветового спектра, но и расщепление самого луча.

Советуем посмотреть видео:

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий