Классификация датчиков
По измеряемому параметру
-
Датчики давления
- абсолютного давления
- избыточного давления
- разрежения
- давления-разрежения
- разности давления
- гидростатического давления
-
Датчики расхода
- Механические счетчики расхода
- Перепадомеры
- Ультразвуковые расходомеры
- Электромагнитные расходомеры
- Кориолисовые расходомеры
- Вихревые расходомеры
- Уровня
- Поплавковые
- Кондуктометрический
- Ёмкостные
- Радарные
- Ультразвуковые
- Температуры
- Термопара
- Термометр сопротивления
- Пирометр
- Датчик теплового потока
-
Датчик концентрации
Кондуктометры
- Радиоактивности (также именуются детекторами радиоактивности или излучений)
- Ионизационная камера
- Датчик прямого заряда
-
Перемещения
- Абсолютный шифратор
- Относительный шифратор
- LVDT
- Положения
- Контактные
- Бесконтактные
-
Фотодатчики
- Фотосопротивление
- Фотодиод
- Фотоматрица
-
Датчик углового положения
- Сельсин
- Преобразователь угол-код
- RVDT
-
Датчик вибрации
- Датчик виброускорения (акселерометр)
- Датчик виброскорости (велосиметр)
- Датчик виброперемещения (проксиметр)
-
Датчик механических величин
- Датчик относительного расширения ротора
- Датчик абсолютного расширения
- Датчик влажности
- Датчик дуговой защиты
По принципу действия
- Волоконно-оптические
- Оптические датчики (фотодатчики)
- Магнитоэлектрический датчик (На основе эффекта Холла)
- Пьезоэлектрический датчик
- Тензопреобразователь
- Ёмкостной датчик
- Потенциометрический датчик
- Индуктивный датчик
Ссылки
- Датчики: Справочное пособие / В.М. Шарапов, Е.С. Полищук, Н.Д. Кошевой, Г.Г. Ишанин, И.Г. Минаев, А.С. Совлуков. — Москва: Техносфера, 2012. — 624 с.
- Г. Виглеб. Датчики. Устройство и применение. Москва. Издательство «Мир», 1989
- M. Kretschmar and S. Welsby (2005), Capacitive and Inductive Displacement Sensors, in Sensor Technology Handbook, J. Wilson editor, Newnes: Burlington, MA.
- C. A. Grimes, E. C. Dickey, and M. V. Pishko (2006), Encyclopedia of Sensors (10-Volume Set), American Scientific Publishers. ISBN 1-58883-056-X
- Современные датчики. Справочник. ДЖ. ФРАЙДЕН Перевод с английского Ю. А. Заболотной под редакцией Е. Л. Свинцова ТЕХНОСФЕРА Москва Техносфера-2005
- Датчики. Перспективные направления развития. Алейников А. Ф., Гридчин В. А., Цапенко М. П. Изд-во НГТУ — 2001.
- Датчики в современных измерениях. Котюк А. Ф. Москва. Радио и связь — 2006
Классификация датчиков
Различные источник дают различные классификации датчиков, в частности:
- По методу измерения (виду входных величин)
- Активные (генераторные)
- Пассивные (параметрические)
- По динамическому характеру сигналов преобразования
- Дискретные (дискретное представление в виде импульсной последовательности)
- Непрерывные (в виде непрерывного процесса)
- По виду измерительных сигналов
- Аналоговые
- Цифровые
- По среде передачи сигналов
- Проводные
- Беспроводные
- По количеству входных величин
- Одномерные
- Многомерные
- По количеству измерительных функций
- Однофункциональные
- Многофункциональные
- По количеству преобразований энергии и вещества
- Одноступенчатые
- Многоступенчатые
- По наличию компенсационной обратной связи
- Компенсационные
- Некомпенсационные
- По взаимодействию с источниками информации
- Контактные
- Бесконтактные (дистанционного действия)
- По принципу действия
- Волоконно-оптические
- Оптические датчики (фотодатчики)
- Магнитоэлектрический датчик (На основе эффекта Холла)
- Пьезоэлектрический датчик
- Тензопреобразователь
- Ёмкостной датчик
- Потенциометрический датчик
- Индуктивный датчик
- По технологии изготовления
- Элементные
- Интегральные
- По измеряемому параметру
-
Датчики давления
- абсолютного давления
- избыточного давления
- разрежения
- давления-разрежения
- разности давления
- гидростатического давления
-
Датчики расхода
- Механические счетчики расхода
- Перепадомеры
- Ультразвуковые расходомеры
- Электромагнитные расходомеры
- Кориолисовые расходомеры
- Вихревые расходомеры
- Уровня
- Поплавковые
- Кондуктометрический
- Ёмкостные
- Радарные
- Ультразвуковые
- Температуры
- Термопара
- Термометр сопротивления
- Пирометр
- Датчик теплового потока
- Датчик концентрации
- Радиоактивности (также именуются детекторами радиоактивности или излучений)
- Ионизационная камера
- Датчик прямого заряда
-
Перемещения
- Абсолютный шифратор
- Относительный шифратор
- LVDT
- Положения
- Контактные
- Бесконтактные
-
Фотодатчики
- Фотосопротивление
- Фотодиод
- Фотоматрица
-
Датчик углового положения
- Сельсин
- Преобразователь угол-код
- RVDT
- Датчик вибрации
- Датчик виброускорения (акселерометр)
- Датчик виброскорости (велосиметр)
- Датчик виброперемещения (проксиметр)
- Датчик механических величин
- Датчик относительного расширения ротора
- Датчик абсолютного расширения
- Датчик влажности
- Датчик дуговой защиты
Определение слова «Датчик» по БСЭ:
Датчик — первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину (давление, температуру, частоту, скорость, перемещение, напряжение, электрический ток и т.п.) в сигнал, удобный для измерения, передачи, преобразования, хранения и регистрации, а также для воздействия им на управляемые процессы.В состав Д. входят воспринимающий (чувствительный) орган и один или несколько промежуточных преобразователей (рис.). Часто Д. состоит только из одного воспринимающего органа (например, Термопара, термометр сопротивления, Тензодатчик и др.). Выходные сигналы различаются по роду энергии — электрические, механические, пневматические (реже гидравлические), и по характеру модуляции потока энергии — амплитудные, время-импульсные, частотные, фазовые, дискретные (кодовые).Наиболее распространены Д., действие которых основано на изменении электрического сопротивления, ёмкости, индуктивности или взаимной индуктивности электрической цепи (Реостатный датчик, Ёмкостный датчик, Индуктивный датчик и др.), а также на возникновении эдс при воздействии контролируемых механических, акустических, тепловых, электрических, магнитных, оптических или радиационных величин (тензодатчик, Перемещения датчик, Пьезоэлектрический датчик, Давления датчик, Фотоэлемент). Д. характеризуются: законом изменения выходной величины (y) в зависимости от входного воздействия (входной величины x), пределами изменений входных (xmin — xmax) и выходных величин (ymin — ymax). чувствительностью S=&Delta./&Delta.x , порогом чувствительности (значением минимального воздействия, на которое реагирует Д.) и временными параметрами (постоянными времени). В соответствии с классификацией, принятой в Государственной системе приборов и средств автоматизации (ГСП), Д. относятся к техническим средствам сбора и первичной обработки контрольно-измерительной информации. Д. являются одними из основных элементов в устройствах дистанционных измерений, телеизмерений и телесигнализации, регулирования и управления, а также в различных приборах и устройствах для измерений в физике, биологии и медицине для контроля жизнедеятельности человека, животных или растений (см. Датчики биологические).В связи с автоматизацией производства важнейшее значение приобрели Д. для измерения и регистрации плотности и концентрации растворов, состава и свойств веществ, динамической вязкости и текучести различных сред, влажности, прозрачности, интенсивности окраски, толщины слоя, температуры, упругости, концентрации зарядоносителей и др. параметров, характеризующих технологические процессы. Для этого часто используют Д., основанные на ультразвуковых, радиоволновых, оптических, радиационных и др. методах измерения. Для имитации реальных условий при испытании систем автоматического регулирования и в вычислительной технике для решения задач статистическими методами применяются Случайных чисел датчики.Специфические требования предъявляются к выходным сигналам и характеристикам Д. при их использовании в системах централизованного контроля (см. Централизованного контроля и управления машина). Поочерёдное подключение множества Д. к одному измерительному устройству требует максимальной унификации выходных параметров Д. В некоторых случаях термином«Д.» пользуются для обозначения всей передающей части телемеханического или автоматического устройства.Лит.: Агейкин Д. И., Костина Е. Н., Кузнецова Н. Н., Датчики контроля и регулирования, 2 изд., М., 1965. Туричин А. М., Электрические измерения неэлектрических величин, 4 изд. , М. — Л., 1966: Электрические измерительные преобразователи, под ред. Р. Р. Харченко, М. — Л., 1967: Долгов В. А., Кедин А. В., Электронные датчики для автоматических систем контроля, М., 1968.М. М. Гельман.Рис. Структурные схемы датчиков (слева — блок-схема, справа — примеры выполнения): а — простейший вид датчика (термопара). б — каскадное соединение преобразователей. в — дифференциальный датчик. г — компенсационный датчик. 1 — воспринимающий орган датчика (чувствительный элемент). 1а — термопара. 1б и 1г — мембраны. 1в — соленоидный индуктивный датчик. 2 — выходной орган датчика. 2б — индуктивный датчик. 3 — измеритель рассогласования (вычитающий элемент). 3г — индуктивный датчик. 4 — усилитель. 5 — генератор компенсирующей величины. 5г — магнитоэлектрическая система. 6 — промежуточный орган датчика. R — электрическое сопротивление. L — индуктивность. е — электродвижущая сила. I — электрический ток. p — давление.
Применение датчиков
Датчики используются во многих отраслях экономики — добыче и переработке полезных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.
В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.
Датчики по своему назначению и технической реализации близки к понятию «измерительный инструмент» («измерительный прибор»). Однако показания приборов воспринимаются человеком, как правило, напрямую (посредством дисплеев, табло, панелей, световых и звуковых сигналов и проч.), в то время как показания датчиков требуют преобразования в форму, в которой измерительная информация может быть воспринята человеком. Датчики могут входить в состав измерительных приборов, обеспечивая измерение физической величины, результаты которого затем преобразуются для восприятия оператором измерительного прибора.
В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.
В быту датчики используются в термостатах, выключателях, термометрах, барометрах, смартфонах, посудомоечных машинах, кухонных плитах, тостерах, утюгах и другой бытовой технике.
Сферы применения
Области использования миниатюрных устройств обширны:
- Используют в машиностроении для сборки, тестирования, упаковки, сварки, заклепки.
- В лабораториях применяют для контроля, измерения.
- Автомобильной технике, в транспортной промышленности, подвижной технике. Наиболее популярен датчик нейтральной передачи для МКПП. Во многих системах управления автомобилей присутствуют датчики. Они есть в механизме рулевого управления, клапана, педали, в подкапотных системах, в системах управления зеркалами, креслами, откидными крышами.
- Применяют их в конструкциях роботов, в научной сфере и сфере образования.
- Медицинской технике.
- Сельском хозяйстве и спецтехнике.
- Деревообрабатывающей промышленности.
- Металлообрабатывающей области, в станках металлорежущих.
- Проволочном производстве.
- Конструкциях прокатных станов, в станках с программным управлением.
- Системы слежения.
- В охранных системах.
- Гидравлических и пневматических системах.
Описание и назначение
Датчики положения могут быть разными по форме. Изготавливают их для определенных целей. С помощью прибора можно определить месторасположение объекта. Причем физическое состояние не имеет значение. Объект может иметь твердое тело, быть в жидком состоянии, либо даже сыпучим.
При помощи прибора можно решить разные задачи:
- Измеряют положение и перемещение (угловое и линейное) органов в рабочих машинах, механизмах. Измерение может совмещаться с передачей данных.
- В АСУ, робототехнике может быть звеном обратной связи.
- Контроль степени открытия/закрытия элементов.
- Регулировка направляющих шкивов.
- Электропривод.
- Определение данных расстояния до предметов без привязки к ним.
- Проверку функций механизмов в лабораториях, то есть провести испытания.
Определения датчика
Широко встречаются следующие определения:
- чувствительный элемент, приемник, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя, возможно, и иной по природе, например — пневматический сигнал;
- законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором.[источник не указан 647 дней]
- датчиком называется часть измерительной или управляющей системы, представляющая собой конструктивную совокупность измерительных преобразователей, включающую преобразователь вида энергии сигнала, размещенную в зоне действия влияющих факторов объекта и воспринимающий естественно закодированную информацию от этого объекта.
- датчик — конструктивно обособленная часть измерительной системы, содержащая один или несколько первичных преобразователей, а также один или несколько промежуточных преобразователей.
Эти определения соответствуют практике использования термина производителями датчиков. В первом случае датчик — это небольшое, обычно монолитное, устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др.
В третьем и четвёртом определении акцент делается на том, что датчик является конструктивно обособленной частью измерительной системы, воспринимающей информацию, а, следовательно, обладающий самодостаточностью для выполнения этой задачи и определенными метрологическими характеристиками.
Также датчики подразделяются на
Аналоговые
Сформированный аналоговый выходной сигнал пропорционален измеряемому им входному сигналу. Как правило, аналоговое напряжение лежит в диапазоне от 0 до 10 В или в качестве выходного сигнала используется ток.
Примерами физических параметров для непрерывных сигналов могут служить температура, усилие, давление, смещение и др. Например, аналоговый датчик линии Arduino.
Цифровые
Дискретные сигналы будут не непрерывными во времени и могут быть представлены в “битах” для последовательной передачи и в “байтах” для параллельной передачи. Измеряемая величина будет представлена в цифровом формате. Цифровой выход может быть в форме логики 1 или логики 0 (включено-выключено).
Цифровой датчик состоит из датчика, кабеля и передатчика. Измеренный сигнал преобразован в цифровой сигнал внутри датчика самого без любого внешнего компонента. Кабель используется для передачи на большие расстояния. Примером цифрового датчика может служить энкодер.
Он включает в себя цифровой светодиод и фотодиод, используемый для получения цифрового сигнала для измерения скорости вращающегося вала. Диск прикреплен к вращающемуся валу. Вращающийся вал имеет по окружности прозрачные пазы. Когда вал вращается со скоростью, диск также вращается вместе с ним.
Сигнал от светодиода проходит через паз и фиксируется фотодиодом. Выходным сигналом будет логическая 1 или логический 0. Выходные данные отображаются на ЖК-дисплее после прохождения через счетчик.
В настоящее время есть огромное количество датчиков для различных целей и каждый год датчики становятся все совершеннее. Сейчас все больше становится программируемых датчиков, которые можно калибровать и программировать на различные виды измерений.
Обычно в комплекте с этими датчиками идет достаточно подробная инструкция со схемами подключения, способами настройки и программирования датчиков.
Применение датчиков
Датчики используются во многих отраслях экономики — добыче и переработке полезных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.
В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.
Датчики по своему назначению и технической реализации близки к понятию «измерительный инструмент» («измерительный прибор»). Однако показания приборов воспринимаются человеком, как правило, напрямую (посредством дисплеев, табло, панелей, световых и звуковых сигналов и проч.), в то время как показания датчиков требуют преобразования в форму, в которой измерительная информация может быть воспринята человеком. Датчики могут входить в состав измерительных приборов, обеспечивая измерение физической величины, результаты которого затем преобразуются для восприятия оператором измерительного прибора.
В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.
В быту датчики используются в термостатах, выключателях, термометрах, барометрах, смартфонах, посудомоечных машинах, кухонных плитах, тостерах, утюгах и другой бытовой технике.
Производители и модели датчиков присутствия
Рассмотрим, какие модели датчиков присутствия предлагают мировые компании.
Theben AG (Германия)
В 1921 году в Штутгарте Пауль Швенк основал компанию, изготавливавшую таймеры и аксессуары для часов.
Рачительный хозяин, стремясь к экономии, изобрел и в 1930 году запустил в производство первый датчик обратного отсчета для управления освещением, который стал хитом продаж.
Успех стимулировал дальнейшее стремление к инновациям, что превратило Theben AG в европейского лидера в производстве приборов для эффективного энергосбережения, различных датчиков, “умных” розеток Wi-Fi и т.д.
Датчики присутствия Theben, управляющие системой освещения:
SPHINX 104-360 | SPHINX 104-360/2 | SPHINX 104-360 AP |
Принцип действия | ||
инфракрасный | инфракрасный | инфракрасный |
Способ монтажа | ||
потолок, встроенный | потолок, встроенный | потолок, накладной |
Угол охвата | ||
360о | 360о | 360о |
Радиус контроля | ||
7 м | 7 м | 7 м |
Число каналов | ||
1 | 2 | 1 |
Макс. мощность ламп | ||
1800 Вт | 1800 Вт | 2000 Вт |
Уровень освещенности | ||
10-2000 Лк | 10-2000 Лк | 10-2000 Лк |
Задержка выключения | ||
1 с-20 мин | 1 с-20 мин | 1 с-20 мин |
Уровень защиты | ||
IP 41 | IP 41 | IP 41 |
Все приборы оборудованы встроенным регулируемым люксметром и пультом дистанционного управления (см. Розетки с дистанционным управлением).
У SPHINX 104-360/2 есть второй канал выхода, с задержкой отключения 10 сек – 60 мин, сигнал с которого может подаваться на кондиционер, радиатор электроотопления, вентилятор.
OMRON (Япония)
Компания OMRON (г. Киото), основана Кадзума Татеиси в 1933 году. В послевоенные годы она стала одной из фирм-творцов “японского экономического чуда”.
Основное направление деятельности – производство средств автоматизации и сенсорных устройств. В этой области ей принадлежит более 40% японского рынка. Годовой оборот компании – более 5 миллиардов долларов.
Фотоэлектрические датчики обнаружения OMRON:
E3FA/E3FB-B/-V | E3H2 | E3T-C |
Обнаружение объекта: максимальное расстояние срабатывания | ||
Барьерный режим | ||
20 м | 15 м | 4 м |
Рефлекторный режим | ||
4 м | 3 м | 2 м |
Диффузный режим | ||
1 м | 0,3 м | 0,3 м |
Источник света (длина волны) | ||
красный светодиод (624 нм) | красный светодиод (624 нм) | светодиоды: инфракрасный (870 нм), красный (630 нм) |
Напряжение питания | ||
10-30 V постоянный ток | 10-30 V постоянный ток | 10-30 V постоянный ток |
Прибор Е3Н2 оборудован ярким светодиодным индикатором, упрощающим выравнивание, а габариты Е3Т-С облегчают его монтаж в условиях стесненного пространства.
ESYLUX (Германия)
Компания ESYLUX (г. Аренсбург) разрабатывает и выпускает светильники для аварийного и наружного освещения, датчики присутствия и движения, звуковые оповещатели, детекторы дыма, извещатели пламени. Подтверждением высокого уровня продукции является полученный ею знак качества “German Engineering”. Филиалы и торговые представительства фирмы открыты в 13 странах
В таблице представлены образцы датчиков присутствия производства ESYLUX.
PD 360/8 Basic | PD 360/8 Basic SMB | PD 180i/R |
Принцип действия | ||
инфракрасный | инфракрасный | инфракрасный |
Способ монтажа | ||
потолок, накладной | потолок, встроенный | стена, встроенный |
Угол охвата | ||
360о | 360о | 180о |
Дальность действия | ||
8 м | 8 м | 16 м |
Число каналов | ||
1 | 1 | 2 |
Макс. мощность ламп | ||
2300 Вт | 2300 Вт | 2300 Вт |
Уровень освещенности | ||
5-2000 Лк | 5-2000 Лк | 5-2000 Лк |
Задержка выключения | ||
15 с-30 мин | 15 с-30 мин | 12 с-60 мин |
Уровень защиты | ||
IP 40 | IP 40 | IP 44 |
Рассмотрим датчик PD 180i/R с пультом дистанционного управления и дальностью действия 16м. Повышенный класс защиты позволяет монтировать его во влажных помещениях, а второй канал с задержкой 5 – 120 минут – подключать дополнительное оборудование.
Ссылки
В Викисловаре есть статья «датчик»
- Датчики: Справочное пособие / В.М. Шарапов, Е.С. Полищук, Н.Д. Кошевой, Г.Г. Ишанин, И.Г. Минаев, А.С. Совлуков. — Москва: Техносфера, 2012. — 624 с.
- Г. Виглеб. Датчики. Устройство и применение. Москва. Издательство «Мир», 1989
- M. Kretschmar and S. Welsby (2005), Capacitive and Inductive Displacement Sensors, in Sensor Technology Handbook, J. Wilson editor, Newnes: Burlington, MA.
- C. A. Grimes, E. C. Dickey, and M. V. Pishko (2006), Encyclopedia of Sensors (10-Volume Set), American Scientific Publishers. ISBN 1-58883-056-X
- Современные датчики. Справочник. ДЖ. ФРАЙДЕН Перевод с английского Ю. А. Заболотной под редакцией Е. Л. Свинцова ТЕХНОСФЕРА Москва Техносфера-2005
- Датчики. Перспективные направления развития. Алейников А. Ф., Гридчин В. А., Цапенко М. П. Изд-во НГТУ — 2001.
- Датчики в современных измерениях. Котюк А. Ф. Москва. Радио и связь — 2006
Общие сведения
Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.
Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. В качестве отдельной категории использования датчиков в автоматических системах регистрации параметров можно выделить их применение в системах научных исследований и экспериментов.