Представление чисел в памяти компьютера
- подробнее см. Прямой код, Дополнительный код (представление числа), Число с плавающей запятой
Для представления натурального числа в памяти компьютера, оно обычно переводится в двоичную систему счисления. Для представления отрицательных чисел часто используется дополнительный код числа, который получается путём прибавления единицы к инвертированному представлению модуля данного отрицательного числа в двоичной системе счисления.
Представление чисел в памяти компьютера имеет ограничения, связанные с ограниченностью объёма памяти, выделяемого под числа. Даже натуральные числа представляют собой математическую идеализацию, ряд натуральных чисел бесконечен. На объём же памяти ЭВМ накладываются физические ограничения. В связи с этим в ЭВМ мы имеем дело не с числами в математическом смысле, а с некоторыми их представлениями, или приближениями. Для представления чисел отводится некоторое определенное число ячеек (обычно двоичных, бит — от BInary digiT) памяти. В случае, если в результате выполнения операции полученное число должно занять больше разрядов, чем отводится в ЭВМ, результат вычислений становится неверным — происходит так называемое арифметическое переполнение. Действительные числа обычно представляются в виде чисел с плавающей запятой. При этом лишь некоторые из действительных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями. В наиболее распространённом формате число с плавающей запятой представляется в виде последовательности битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа.
Основные числовые множества
Натуральные числа (N{\displaystyle \mathbb {N} }) — числа, получаемые при естественном счёте: N={1,2,3,…}.{\displaystyle \mathbb {N} =\left\{1,2,3,…\right\}.} Иногда к множеству натуральных чисел также относят ноль, то есть N={0,1,2,3,…}{\displaystyle \mathbb {N} =\left\{0,1,2,3,…\right\}}. Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Сложение и умножение натуральных чисел коммутативны и ассоциативны, а умножение натуральных чисел дистрибутивно относительно сложения и вычитания.
Целые числа (Z{\displaystyle \mathbb {Z} }) — числа, получаемые объединением натуральных чисел со множеством чисел противоположных натуральным и нулём, обозначаются Z={…−2,−1,0,1,2,…}{\displaystyle \mathbb {Z} =\left\{…-2,-1,0,1,2,…\right\}}. Любое целое число можно представить как разность двух натуральных. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления); в общей алгебре такая алгебраическая структура называется кольцом.
Рациональные числа (Q{\displaystyle \mathbb {Q} }) — числа, представимые в виде дроби m/n (n ≠ 0), где m — целое число, а n — натуральное число. Рациональные числа замкнуты уже относительно всех четырёх арифметических действий: сложения, вычитания, умножения и деления (кроме деления на ноль); в общей алгебре такая алгебраическая структура называется полем. Для обозначения рациональных чисел используется знак Q{\displaystyle \mathbb {Q} } (от англ. quotient).
Действительные (вещественные) числа (R{\displaystyle \mathbb {R} }) — числа, представляющие собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа) операций предельного перехода. Множество вещественных чисел обозначается R{\displaystyle \mathbb {R} }. Его можно рассматривать как пополнение поля рациональных чисел Q{\displaystyle \mathbb {Q} } при помощи нормы, являющейся обычной абсолютной величиной. Кроме рациональных чисел, R{\displaystyle \mathbb {R} } включает множество иррациональных чисел I{\displaystyle \mathbb {I} }, не представимых в виде отношения целых.
Комплексные числа (C{\displaystyle \mathbb {C} }) — числа, являющиеся расширением множества действительных чисел. Они могут быть записаны в виде z=x+iy{\displaystyle z=x+iy}, где i — т. н. мнимая единица, для которой выполняется равенство i2=−1{\displaystyle i^{2}=-1}. Комплексные числа используются при решении задач электротехники, гидродинамики, картографии, квантовой механики, теории колебаний, теории хаоса, теории упругости и многих других. Комплексные числа подразделяются на алгебраические и трансцендентные. При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим. Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).
Для перечисленных множеств чисел справедливо следующее выражение: N⊂Z⊂Q⊂R⊂C.{\displaystyle \mathbb {N} \subset \mathbb {Z} \subset \mathbb {Q} \subset \mathbb {R} \subset \mathbb {C} .}
Появление чисел
Интуитивное представление о числе, по–видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. То, что первобытные люди сначала знали только “один”, “два” и “много”, подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными. Например, слово “три” использовалось только в сочетаниях “три дерева” или “три человека”; представление о том, что эти множества имеют между собой нечто общее – понятие троичности – требует высокой степени абстракции. О том, что счет возник раньше появления этого уровня абстракции, свидетельствует тот факт, что слова “один” и “первый”, равно как “два” и “второй”, во многих языках не имеют между собой ничего общего, в то время как лежащие за пределами первобытного счета “один”, “два”, “много”, слова “три” и “третий”, “четыре” и “четвертый” ясно указывают на взаимосвязь между количественными и порядковыми числительными.
Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности. В глубокой древности примитивные числовые записи делались в виде зарубок на палке, узлов на веревке, выложенных в ряд камешков, причем подразумевалось, что между пересчитываемыми элементами множества и символами числовой записи существует взаимно однозначное соответствие. Но для чтения таких числовых записей названия чисел непосредственно не использовались. Ныне мы с первого взгляда распознаем совокупности из двух, трех и четырех элементов; несколько труднее распознаются на взгляд наборы, состоящие из пяти, шести или семи элементов. А за этой границей установить на глаз их число практически уже невозможно, и нужен анализ либо в форме счета, либо в определенном структурировании элементов. Счет на бирках, по–видимому, был первым приемом, который использовался в подобных случаях: зарубки на бирках располагались определенными группами подобно тому, как при подсчете избирательных бюллетеней их часто группируют пачками по пять или десять штук. Очень широко был распространен счет на пальцах, и вполне возможно, что названия некоторых чисел берут свое начало именно от этого способа подсчета.
Важная особенность счета заключается в связи названий чисел с определенной схемой счета. Например, слово “двадцать три” – не просто термин, означающий вполне определенную (по числу элементов) группу объектов; это термин составной, означающий “два раза по десять и три”. Здесь отчетливо видна роль числа десять как коллективной единицы или основания; и действительно, многие считают десятками, потому что, как отметил еще Аристотель, у нас по десять пальцев на руках и на ногах. По той же причине использовались основания пять или двадцать. На очень ранних стадиях развития истории человечества за основания системы счисления принимались числа 2, 3 или 4; иногда для некоторых измерений или вычислений использовались основания 12 и 60.
Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа. Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ. Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.
Обобщения чисел
Кватернионы, представляющие собой разновидность гиперкомплексных чисел. Множество кватернионов обозначается H{\displaystyle \mathbb {H} }. Кватернионы в отличие от комплексных чисел не коммутативны относительно умножения.
В свою очередь октавы O{\displaystyle \mathbb {O} }, являющиеся расширением кватернионов, уже теряют свойство ассоциативности.
В отличие от октав, седенионы S{\displaystyle \mathbb {S} } не обладают свойством альтернативности, но сохраняют свойство степенной ассоциативности.
Для этих множеств обобщённых чисел справедливо следующее выражение: C⊂H⊂O⊂S{\displaystyle \mathbb {C} \subset \mathbb {H} \subset \mathbb {O} \subset \mathbb {S} }
p-адические числа Qp{\displaystyle \mathbb {Q} _{p}} можно рассматривать как элементы поля, являющегося пополнением поля рациональных чисел Q{\displaystyle \mathbb {Q} } при помощи т. н. , аналогично тому, как поле действительных чисел R{\displaystyle \mathbb {R} } определяется как его пополнение при помощи обычной абсолютной величины.
Аде́ли определяются как бесконечные последовательности {a∞,a2,a3,…ap…}, где a∞ — любое действительное число, а ap — p-адическое, причём все ap, кроме, может быть, конечного их числа, являются целыми p-адическими. Складываются и умножаются адели покомпонентно и образуют кольцо. Поле рациональных чисел вкладывается в это кольцо обычным образом r→{r, r,…r,…}. Обратимые элементы этого кольца образуют группу и называются иде́лями.
Практически важным обобщением числовой системы является интервальная арифметика.
Число в философии
Философское понимание числа заложили пифагорейцы. Аристотель свидетельствует, что пифагорейцы считали числа «причиной и началом» вещей, а отношения чисел — основой всех отношений в мире. Числа придают миру упорядоченность и делают его космосом. Такое отношение к числу было принято Платоном, а позже неоплатониками. Платон при помощи чисел различает подлинное бытие (то, что существует и мыслится само по себе), и неподлинное бытие, (то, что существует лишь благодаря другому и познаётся только в отношении). Срединное положение между ними занимает число. Оно придаёт меру и определённость вещам и делает их причастными бытию. Благодаря числу вещи могут быть подвергнуты пересчёту и поэтому они могут быть мыслимы, а не только ощущаемы. Неоплатоники, особенно Ямвлих и Прокл, почитали числа столь высоко, что даже не считали их сущими — устроение мира исходит от числа, хотя и не непосредственно. Числа сверхсущны, пребывают выше Ума, и недоступны знанию. Неоплатоники различают божественные числа (прямую эманацию Единого) и математические числа (составленные из единиц). Последние являются несовершенными подобиями первых. Аристотель, наоборот, приводит целый ряд аргументов, показывающих, что утверждение о самостоятельном существовании чисел приводит к нелепостям. Арифметика выделяет в этих реально сущих вещах только один аспект и рассматривает их с точки зрения их количества. Числа и их свойства являются результатом такого рассмотрения. Кант считал, что явление познано тогда, когда оно сконструировано в соответствии с априорными понятиями — формальными условиями опыта. Число — одно из таких условий. Число задаёт конкретный принцип или схему конструирования. Любой объект является исчислимым и измеряемым, потому что он сконструирован по схеме числа (или величины). Поэтому всякое явление может рассматриваться математикой. Разум воспринимает природу подчинённой числовым закономерностям именно потому, что сам строит её в соответствии с числовыми закономерностями. Так объясняется возможность применения математики в изучении природы. Математические определения, разработанные в XIX веке, были серьёзно пересмотрены в начале XX века. Это было вызвано не столько математическими, сколько философскими проблемами. Определения, которые были даны Пеано, Дедекиндом или Кантором, и которые используются в математике и в настоящее время, нужно было обосновать с помощью фундаментальных принципов, коренящихся в самой природе знания. Различают три таких философско-математических подхода: логицизм, интуиционизм и формализм. Философскую базу логицизма разработал Рассел. Он полагал, что истинность математических аксиом неочевидна. Истинность обнаруживается сведением к наиболее простым фактам. Отражением таких фактов Рассел считал аксиомы логики, которые он положил в основу определения числа. Важнейшим понятием у него является понятие класса. Натуральное число η есть класс всех классов, содержащих η элементов. Дробь — это уже не класс, а отношение классов. Интуицист Брауэр имел противоположную точку зрения: логику он считал лишь абстракцией от математики, рассматривал натуральный ряд чисел как базовую интуицию, лежащую в основании всякой мыслительной деятельности. Гильберт, главный представитель формальной школы, видел обоснование математики в построении непротиворечивой аксиоматической базы, в пределах которой можно бы было формально обосновать любое математическое понятие. В разработанной им аксиоматической теории действительных чисел представление о числе лишается всякой глубины и сводится лишь к графическому символу, подставляемому по определённым правилам в формулы теории.
Основные виды чисел
, получаемые при естественном счёте. Множество натуральных чисел обозначается N. Т.о. N={1, 2, 3, …}(иногда к множеству натуральных чисел также относят ноль, то есть N}={0, 1, 2, 3, ….}. Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Натуральные числа коммутативны и ассоциативны относительно сложения и умножения, а умножение натуральных чисел дистрибутивно относительно сложения.
получаемые объединением натуральных чисел с множеством отрицательных чисел и нулём, обозначаются Z={…-2, -1, 0, 1, 2, …}. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления).
— числа, представимы в виде дроби m/n (n≠0), где m и n — целые числа. Для рациональных чисел определены все четыре «классические» арифметические действия: сложение, вычитание, умножение и деление (кроме деления на ноль). Для обозначения рациональных чисел используется знак Q.