Ядерные реакции

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо – температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на Солнце происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

48113Cd+n→48114Cd+γ{\displaystyle {}_{48}^{113}{\textrm {Cd}}+n\rightarrow {}_{48}^{114}{\textrm {Cd}}+\gamma }.

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

48113Cd(n,γ)48114Cd{\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma ){}_{48}^{114}{\textrm {Cd}}}.

Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.

Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы

714N(α,p)817O{\displaystyle {}_{7}^{14}{\textrm {N}}(\alpha ,p){}_{8}^{17}{\textrm {O}}}, где p=11H{\displaystyle p={}_{1}^{1}{\textrm {H}}} — ядро атома водорода, протон.

В «химической» записи эта реакция выглядит как

714N+α→p+817O{\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}}.

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

48113Cd+n→48114Cd+γ{\displaystyle {}_{48}^{113}{\textrm {Cd}}+n\rightarrow {}_{48}^{114}{\textrm {Cd}}+\gamma }.

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

48113Cd(n,γ)48114Cd{\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma ){}_{48}^{114}{\textrm {Cd}}}.

Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.

Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы

714N(α,p)817O{\displaystyle {}_{7}^{14}{\textrm {N}}(\alpha ,p){}_{8}^{17}{\textrm {O}}}, где p=11H{\displaystyle p={}_{1}^{1}{\textrm {H}}} — ядро атома водорода, протон.

В «химической» записи эта реакция выглядит как

714N+α→p+817O{\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}}.

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

48113Cd+n→48114Cd+γ{\displaystyle {}_{48}^{113}{\textrm {Cd}}+n\rightarrow {}_{48}^{114}{\textrm {Cd}}+\gamma }.

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

48113Cd(n,γ)48114Cd{\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma ){}_{48}^{114}{\textrm {Cd}}}.

Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.

Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы

714N(α,p)817O{\displaystyle {}_{7}^{14}{\textrm {N}}(\alpha ,p){}_{8}^{17}{\textrm {O}}}, где p=11H{\displaystyle p={}_{1}^{1}{\textrm {H}}} — ядро атома водорода, протон.

В «химической» записи эта реакция выглядит как

714N+α→p+817O{\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}}.

Цепные реакции

Деление урана-235, а также таких ядер, как уран-233 и плутоний-239, характеризуется одной важной особенностью – наличием среди продуктов реакции свободных нейтронов. Эти частицы, проникая в другие ядра, в свою очередь, способны инициировать их деление опять-таки с вылетом новых нейтронов и так далее

Подобный процесс именуется цепной ядерной реакцией.

Ядерные реакции

Течение цепной реакции зависит от того, как соотносится число вылетающих нейтронов очередного поколения с количеством их в предыдущем поколении. Это отношение k = Ni/Ni–1 (здесь N – количество частиц, i – порядковый номер поколения) носит название коэффициента размножения нейтронов. При k < 1 цепная реакция не идет. При k > 1 число нейтронов, а значит, и делящихся ядер, возрастает лавинообразно. Пример цепной ядерной реакции такого типа – взрыв атомной бомбы. При k = 1 процесс протекает стационарно, примером чему служит реакция, управляемая при помощи поглощающих нейтроны стержней, в ядерных реакторах.

Ядерный синтез

Наибольшее энерговыделение (в расчете на один нуклон) происходит при слиянии легких ядер – так называемых реакциях синтеза. Чтобы вступить в реакцию, положительно заряженные ядра должны преодолеть кулоновский барьер и сблизиться на расстояние сильного взаимодействия, не превышающее размеров самого ядра. Поэтому они должны обладать чрезвычайно большой кинетической энергией, что означает высокие температуры (десятки миллионов градусов и выше). По этой причине реакции синтеза еще называют термоядерными.

Пример ядерной реакции синтеза – образование гелия-4 с вылетом нейтрона при слиянии ядер дейтерия и трития:

21H + 31H → 42He + 1n.

Здесь высвобождается энергия 17,6 МэВ, что в расчете на один нуклон более чем в 3 раза превышает энергию деления урана. Из них 14,1 МэВ приходится на кинетическую энергию нейтрона и 3,5 МэВ – ядра гелия-4. Такая существенная величина создается за счет огромной разницы в энергиях связи ядер дейтерия (2,2246 МэВ) и трития (8,4819 МэВ) с одной стороны, и гелия-4 (28,2956 МэВ) – с другой.

Ядерные реакции

В реакциях деления ядра высвобождается энергия электрического отталкивания, в то время как при синтезе энерговыделение происходит за счет сильного взаимодействия – самого мощного в природе. Это и определяет столь значительный энергетический выход данного типа ядерных реакций.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы. Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны, не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой. Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием. Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235U число нейтронов, родившихся в одном акте деления, в среднем равно от 2 до 3). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике. Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в ядерном оружии.

Общее понятие о ядерных реакциях

Существуют явления, в которых ядро атома того или иного элемента вступает во взаимодействие с другим ядром или какой-либо элементарной частицей, то есть обменивается с ними энергией и импульсом. Подобные процессы и называются ядерными реакциями. Результатом их может стать изменение состава ядра или образование новых ядер с испусканием определенных частиц. При этом возможны такие варианты, как:

  • превращение одного химического элемента в другой;
  • деление ядра;
  • синтез, то есть слияние ядер, при котором образуется ядро более тяжелого элемента.

Начальная фаза реакции, определяемая типом и состоянием вступающих в нее частиц, называется входным каналом. Выходные каналы – это возможные пути, по которым реакция будет протекать.

Ядерные реакции

Деление ядер

Гораздо больший энергетический выход имеют реакции деления. Так называется процесс, при котором ядро самопроизвольно или вынужденно распадается на близкие по массе осколки (как правило, два, редко – три) и некоторые более легкие продукты. Ядро делится, если его потенциальная энергия превысит исходное значение на некоторую величину, называемую барьером деления. Однако вероятность спонтанного процесса даже для тяжелых ядер невелика.

Ядерные реакции

Она существенно возрастает при получении ядром соответствующей энергии извне (при попадании в него частицы). Наиболее легко проникает в ядро нейтрон, поскольку он не подвержен силам электростатического отталкивания. Попадание нейтрона приводит к повышению внутренней энергии ядра, оно деформируется с образованием перетяжки и делится. Осколки разлетаются под действием кулоновских сил. Пример ядерной реакции деления демонстрирует уран-235, поглотивший нейтрон:

23592U + 1n → 14456Ba + 8936Kr + 3 1n.

Расщепление на барий-144 и криптон-89 – лишь один из возможных вариантов деления урана-235. Эту реакцию можно записать в виде 23592U + 1n → 23692U* → 14456Ba + 8936Kr + 3 1n, где 23692U* – сильно возбужденное составное ядро с высокой потенциальной энергией. Избыток ее наряду с разностью энергий связи материнского и дочерних ядер выделяется главным образом (около 80%) в форме кинетической энергии продуктов реакции, а также частично в форме потенциальной энергии осколков деления. Общая энергия деления массивного ядра – примерно 200 МэВ. В пересчете на 1 грамм урана-235 (при условии, что прореагировали все ядра) это составляет 8,2 ∙ 104 мегаджоулей.

Правила записи ядерных реакций

В примерах, приведенных ниже, демонстрируются способы, с помощью которых принято описывать реакции с участием ядер и элементарных частиц.

Первый способ – тот же, что применяется в химии: в левой части ставятся исходные частицы, в правой – продукты реакции. Например, взаимодействие ядра бериллия-9 с налетающей альфа-частицей (так называемая реакция открытия нейтрона) записывается следующим образом:

94Be + 42He → 126C + 1n.

Верхние индексы обозначают количество нуклонов, то есть массовые числа ядер, нижние – количество протонов, то есть атомные номера. Суммы тех и других в левой и правой части должны совпадать.

Сокращенный способ написания уравнений ядерных реакций, часто применяющийся в физике, выглядит так:

94Be (α, n) 126C.

Общий вид такой записи: A (a, b1b2…) B. Здесь A – ядро-мишень; a – налетающая частица или ядро; b1, b2 и так далее – легкие продукты реакции; B – конечное ядро.

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

48113Cd+n→48114Cd+γ{\displaystyle {}_{48}^{113}{\textrm {Cd}}+n\rightarrow {}_{48}^{114}{\textrm {Cd}}+\gamma }.

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

48113Cd(n,γ)48114Cd{\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma ){}_{48}^{114}{\textrm {Cd}}}.

Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.

Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы

714N(α,p)817O{\displaystyle {}_{7}^{14}{\textrm {N}}(\alpha ,p){}_{8}^{17}{\textrm {O}}}, где p=11H{\displaystyle p={}_{1}^{1}{\textrm {H}}} — ядро атома водорода, протон.

В «химической» записи эта реакция выглядит как

714N+α→p+817O{\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}}.

[править] Ядерные реакции в природе

Синтез и превращение элементов происходят на всех стадиях звездной эволюции. Появление новых элементов возможно за счет слияния ядер либо за счет поглощения ядрами нейтронов. Условия, необходимые для этих процессов, возникают либо в недрах звезд, либо в звездных атмосферах, и обычно связаны с ускорением частиц за счет высокой температуры либо электромагнитных полей.

Основной источник энергии нашей звезды Солнце — ядерная реакция превращения водорода в гелий (вообще наиболее обычная во Вселенной и характерная для большинства звезд). В звездах другого типа протекают термоядерные реакции гелия с образованием углерода, кислорода, неона, магния, серы, аргона, кальция и так далее. С участием протонов и нейтронов образуются элементы вплоть до висмута. Радиоактивные элементы образуются при взрыве сверхновых звезд, когда освобождается колоссальная энергия, которая расходуется на синтез тяжелых элементов.

На Земле в основном только реакции радиоактивного распада, синтез элементов происходит только на звездах, поэтому нас постоянно окружают осколки когда-то разорвавшейся звезды, которые позже летали в космосе, объединились в туманность, и после образования в этой туманности молодой звезды (нашего Солнца) конденсировались в планеты.

Примеры решения задач

Рассмотрим реакцию деления 23592U + 1n → 14054Xe + 9438Sr + 2 1n. Каков ее энергетический выход? В общем виде формула для его расчета, отражающая разность энергий покоя частиц до и после реакции, выглядит следующим образом:

Q = Δmc2 = (mA + mB – mX – mY + …) ∙ c2.

Вместо умножения на квадрат скорости света можно умножить разность масс на коэффициент 931,5 и получить значение энергии в мегаэлектронвольтах. Подставив в формулу соответствующие значения атомных масс, получим:

Q = (235,04393 + 1,00866 – 139,92164 – 93,91536 — 2∙1,00866) ∙ 931,5 ≈ 184,7 МэВ.

Ядерные реакции

Еще один пример – на реакцию синтеза. Это один из этапов протон-протонного цикла – главного источника солнечной энергии.

32He + 32He → 42He + 2 11H + γ.

Применим ту же формулу:

Q = (2 ∙ 3,01603 – 4,00260 — 2 ∙ 1,00728) ∙ 931,5 ≈ 13,9 МэВ.

Основная доля этой энергии – 12,8 МэВ – приходится в данном случае на гамма-фотон.

Мы рассмотрели только простейшие примеры ядерных реакций. Физика этих процессов чрезвычайно сложна, они отличаются огромным разнообразием. Исследование и применение ядерных реакций имеет большое значение как в практической области (энергетика), так и в фундаментальной науке.

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц.

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа — сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

48113Cd+n→48114Cd+γ{\displaystyle {}_{48}^{113}{\textrm {Cd}}+n\rightarrow {}_{48}^{114}{\textrm {Cd}}+\gamma }.

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Второй способ записи, более удобный для ядерной физики, имеет вид A (a, bcd…) B, где А — ядро мишени, а — бомбардирующая частица (в том числе ядро), b, с, d, … — испускаемые частицы (в том числе ядра), В — остаточное ядро. В скобках записываются более лёгкие продукты реакции, вне — более тяжёлые. Так, вышеприведённая реакция захвата нейтрона может быть записана в таком виде:

48113Cd(n,γ)48114Cd{\displaystyle {}_{48}^{113}{\textrm {Cd}}(n,\gamma ){}_{48}^{114}{\textrm {Cd}}}.

Реакции часто называют по совокупности налетающих и испускаемых частиц, стоящих в скобках; так, выше записан типичный пример (n, γ)-реакции.

Первое принудительное ядерное превращение азота в кислород, которое провёл Резерфорд, обстреливая азот альфа-частицами, записывается в виде формулы

714N(α,p)817O{\displaystyle {}_{7}^{14}{\textrm {N}}(\alpha ,p){}_{8}^{17}{\textrm {O}}}, где p=11H{\displaystyle p={}_{1}^{1}{\textrm {H}}} — ядро атома водорода, протон.

В «химической» записи эта реакция выглядит как

714N+α→p+817O{\displaystyle {}_{7}^{14}{\textrm {N}}+\alpha \rightarrow p+{}_{8}^{17}{\textrm {O}}}.

При каких условиях происходит ядерная реакция?

Тяжелые ядра некоторых элементов, например урана, при определенных условиях разваливаются на два осколка. Однако это не просто осколки, а многозарядные ионы, которые разлетаются в разные стороны. При этом выделяется огромное количество энергии.

Кто же является инициатором реакции ядерного деления? Дело в том, что ядро урана само по себе никогда не делится. Чаще всего для того, чтобы деление произошло, необходим минимальный энергетический толчок. Этот процесс можно сравнить с катанием на лыжах с довольно пологого склона: чтобы скатиться вниз, нужно оттолкнуться палками. А при делении урана такой незначительный толчок производит нейтрон. Да, именно нейтрон и является инициатором ядерных реакций.

Ядерные реакцииРасщепление ядра урана

Мюонный катализ

Основная статья: Мюонный катализ

Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов.

Мюоны µ−, вступая во взаимодействие с термоядерным топливом, образуют мезомолекулы, в которых расстояние между ядрами атомов топлива многократно (≈200 раз) меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.

Число реакций синтеза Xc, инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения Xc ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х — энергетический выход катализируемой реакции.

Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при Xc ~ 104.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий