Виды валентности
I. По количеству необходимых при глаголе валентных элементов:
- простая валентность — существование единственного типа валентной связи между доминирующим и зависимым элементами, что выражается в реализации одной элементарной валентности; простая валентность всегда одноместна;
-
комплексная валентность — возможность наличия большего количества валентных связей между доминирующим элементом и прочими, зависимыми от него элементами, что выражается в реализации более чем одной элементарной валентности, которые
- по типу складывающихся между ними логических отношений могут быть:
- совместимые, когда они реализуются в данной синтагматической цепи одновременно — по принципу конъюнкции;
- несовместимые, когда реализоваться в данной синтагматической цепи может лишь одна из них — по принципу дизъюнкции;
- по типу заполняющихся синтаксических позиций могут быть:
- одноместные (при заполнении несовместных валентных позиций);
- многоместные (при заполнении совместных валентных позиций);
- по типу складывающихся между ними логических отношений могут быть:
II. По отношению к лингвистическим характеристикам связи:
- семантическая валентность — способность данного слова связываться синтаксически с любым словом, в значение которого входит определенный семантический признак;
- лексическая валентность — способность данного слова синтаксически связываться со словами из ограниченного списка, при этом несущественно, есть у них общие семантические признаки или нет;
- морфологическая валентность — способность лексемы сочетаться со словами определенного класса или с отдельным словом в определенной грамматической форме;
- синтаксическая валентность — совокупность и свойства потенциально возможных при слове синтаксических связей, набор и условия реализации синтаксических связей;
III
По степени важности наличия:
- обязательная валентность — возможность сочетаемости, предопределяемая необходимостью слова иметь при себе определенные актанты, мотивированная его семантикой и всегда реализующаяся в речи;
- факультативная валентность — возможность сочетаемости, мотивированная общими сочетательными способностями слова и реализующаяся лишь в некоторых случаях.
Что такое валентность?
Существует такое определение валентности: это способность атома к образованию определенного числа химических связей. В отличие от степени окисления, эта величина всегда только положительная и обозначается римскими цифрами.
В качестве единицы используется эта характеристика для водорода, которая принята равной I. Это свойство показывает, с каким числом одновалентных атомов может соединиться данный элемент. Для кислорода эта величина всегда равна II.
Знать эту характеристику необходимо, чтобы верно записывать химические формулы веществ и уравнения реакций. Знание этой величины поможет установить соотношение между числом атомов различных типов в молекуле.
Данное понятие возникло в химии в XIX веке. Начало теории, объясняющей соединение атомов в различных соотношениях, положил Франкленд, но его идеи о «связывающей силе» не были очень распространены. Решающая роль в развитии теории принадлежала Кекуле. Он называл свойство образовывать некоторое количество связей основностью. Кекуле считал, что это фундаментальное и неизменное свойство каждого вида атомов. Важные дополнения к теории сделал Бутлеров. С развитием этой теории стало возможным наглядно изображать молекулы. Это очень помогло в изучении строения различных веществ.
Примечания
- Partington, J.R. A Short History of Chemistry (неопр.). — Dover Publications, Inc, 1989. — ISBN 0-486-65977-1.
- Frankland E. On a New Series of Organic Bodies Containing Metals. // Phil. Trans. 1852. Vol. 142. P. 417—444.
- Неорганическая химия / Б. Д. Степин, А. А. Цветков ; Под ред. Б. Д. Степина. — М.: Высш. шк., 1994. — С. 71—72
- ↑ Валентность атомов в молекулах / Корольков Д. В. Основы неорганической химии. — М.: Просвещение, 1982. — С. 126
- Развитие учения о валентности. Под ред. Кузнецова В. И. М.: Химия, 1977. стр.19.
- Татевский В. М. Квантовая механика и теория строения молекул. М.: Изд-во МГУ, 1965. Глава 3.
- в том числе в донорно-акцепторной связи
- Серов Н. В. Электронные термы простых молекул // Оптика и спектроскопия, 1984, Т.56, вып.3, с. 390—406.
- Ionov S.P. and Kuznetsov N.T. Excited and Ionized and States of H2 in Terms of the Structural Thermodynamic Model// Russian Journal of Inorganic Chemistry Vol. 50, No. 2, February 2005, pp. 233—237
- В предположении что Валентность неизвестна, но известны молекулярная масса и эквивалентная масса соединения.
Как определить валентность по формуле?
Если у вас перед глазами нет таблицы валентности, но есть формула химического соединения, то возможно определение валентности по формуле. Возьмем для примера формулу оксид марганца – Mn2O7
Рис. 3. Оксид марганца
Как известно, кислород является двухвалентным. Чтобы выяснить, какой валентностью обладает марганец, необходимо валентность кислорода умножить на число атомов газа в этом соединении:
Получившееся число делим на количество атомов марганца в соединении. Получается:
7 (VII) – валентность марганца в данном соединении
Что мы узнали?
В данной теме раскрывается информация о том, что такое валентность. Валентность – способность образовывать химические соединения посредством присоединения к атомам одного элемента атомов другого элемента. Валентность бывает постоянная и переменная. Зная валентность того или иного элемента, можно легко научиться записывать формулы соединений.
Влияние валентности элементов в химических реакциях.
Даже того как ученые узнали, что атом — это не мельчайшая частица в мире, они уже оперировали этим понятием. Они понимали, что есть внутренний фактор, который влияет на протекание химической реакции различных веществ. Из-за того, что ученые по-разному видели строение молекулы, понятие «валентность элемента
» пережило несколько метаморфоз.
Валентность вещества определяется количеством внешних электронов атома. Каким количеством электронов атом обладает, столько максимально соединений он способен совершить. Таким образом «валентность» подразумевает собою число электронных пар атомов.
Хотя электронная теория появилась намного позже, после «разделения» атома на более мелкие частицы, до этого ученые все равно вполне успешно определяли валентность в большинстве случаев. Удавалось им это благодаря химическому анализу веществ.
Это была тяжелая работа: прежде всего, требовалось определить массу элемента в чистом виде. Далее, с помощью химического анализа, ученые определяли каков состав соединения, и только потом могли высчитать, сколько атомов содержит в себе молекула вещества.
Этот метод все еще используется, но не является универсальным. Так удобно определять элемент в простом соединении веществ. Например, с одновалентным водородом, или двухвалентным кислородом.
Но уже при работе с кислотами метод не особо удачный. Нет, мы можем частично использовать его, например, при определении валентности соединений кислотных остатков.
Выглядит это так: используя знание, что валентность кислорода всегда равна двум, мы можем с легкостью высчитать валентность всего кислотного остатка. Например, в H 2 SO 3 валентность SO 3 — I, в HСlO 3 валентность СlO 3 — I.
Составление химических формул по валентности
Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.
Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV, а азота — III.
Записываем рядом символы элементов в следующем виде:
Затем находим НОК валентностей обоих элементов. Оно равно 12 (IV·III).
Определяем индексы каждого элемента:
Записываем формулу соединения: Si3N4.
В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.
Краткие выводы урока:
- Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
- Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
- Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.
Надеюсь урок 6 «Валентность» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.
Наглядность.
Для того, чтоб валентность элемента
была более понятна рекомендуют писать структурные формулы . Создавая их, мы пишем условные обозначения атомов, а потом рисуем черточки, опираясь на валентность. Там каждая черточка обозначает связи каждого из элементов и получается очень наглядно.
Валентность — это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто.
Инструкция
Возьмите на заметку, что обозначается показатель валентности римскими цифрами и ставится над знаком элемента.
Обратите внимание: если формула двухэлементного вещества написана правильно, то,
при умножении числа атомов каждого элемента на его валентность, у всех элементов
должны получиться одинаковые произведения. Примите к сведению, что валентность атомов одних элементов постоянна, а других — переменна, то есть, имеет свойство меняться
Например, водород во всех соединениях одновалентен, поскольку образует только одну связь. Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у серы валентность может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера — элемент с переменной валентностью
Примите к сведению, что валентность атомов одних элементов постоянна, а других — переменна, то есть, имеет свойство меняться. Например, водород во всех соединениях одновалентен, поскольку образует только одну связь. Кислород способен образовывать две связи, являясь при этом двухвалентным. А вот у серы валентность может быть II, IV или VI. Все зависит от элемента, с которым она соединяется. Таким образом, сера — элемент с переменной валентностью.
Заметьте, что в молекулах водородных соединений вычислить валентность очень просто.
Водород всегда одновалентен, а этот показатель у связанного с ним элемента будет равняться количеству атомов водорода в данной молекуле. К примеру, в CaH2 кальций будет двухвалентен.
Запомните главное правило определения валентности: произведение показателя валентности атома какого-либо элемента и количества его атомов в какой-либо молекуле всегда равно произведению показателя валентности атома второго элемента и количества его атомов в данной молекуле.
Посмотрите на буквенную формулу, обозначающую это равенство: V1 x K1 = V2 x K2, где V — это валентность атомов элементов, а К — количество атомов в молекуле. С ее помощью легко определить показатель валентности любого элемента, если известны остальные данные.
Рассмотрите пример с молекулой оксида серы SО2. Кислород во всех соединениях двухвалентен, поэтому, подставляя значения в пропорцию: Vкислорода х Кислорода = Vсеры х Ксеры, получаем: 2 х 2 = Vсеры х 2. От сюда Vсеры = 4/2 = 2. Таким образом, валентность серы в данной молекуле равна 2.
Другие новости по теме:
Химическая формула – это запись, сделанная с использованием общепринятых символов, которая характеризует состав молекулы какого-либо вещества. Например, формула всем известной серной кислоты – H2SO4. Легко можно увидеть, что каждая молекула серной кислоты содержит два атома водорода, четыре атома
Валентность — это способность атома присоединять другие атомные группы и отдельные атомы
Это важное понятие позволяет определить, сколько атомов того или иного вещества входит в формулу, и изобразить молекулу вещества графически. Вам понадобится таблица валентностей Спонсор размещения P&G Статьи
«Знание шрифтов – одно из самых элементарных требований, предъявляемых к сыщику!», — так наставлял когда-то великий Шерлок Холмс своего друга и летописца доктора Ватсона. Аналогично этому, можно смело сказать: «Знание того, как составляются химические формулы – одно из самых элементарных
Химия для каждого школьника начинается с таблицы Менделеева и фундаментальных законов. И уже только потом, уяснив для себя, что же изучает эта сложная наука, можно приступать к составлению химических формул. Для грамотной записи соединения нужно знать валентность атомов, составляющих его. Спонсор
Валентность химического элемента — это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Нужно помнить, что некоторые атомы одного и того же химического элемента могут иметь разную валентность в разных соединениях. Вам
Со школы или даже раньше каждый знает, всё вокруг, включая и нас самих, состоит их атомов – наименьших и неделимых частиц. Благодаря способности атомов соединяться друг с другом, многообразие нашего мира огромно. Способность эта атомов химического элемента образовывать связи с другими атомами
Литература
- Теньер, Л. Основы структурного синтаксиса / Л. Теньер // Вступ. ст. и общ. ред. В. Г. Гака. — М.: Прогресс, 1988. — 656 с.
- Плунгян, В. А. Введение в грамматическую семантику: грамматические значения и грамматические системы языков мира: Учебное пособие / В. А. Плунгян. — М.: Издательство РГГУ, 2011. — 672 с.
- Кацнельсон, С. Д. К понятию типов валентности / С. Д. Кацнельсон // Вопросы языкознания. — 1987. — № 3. — С. 20—32.
- Апресян, Ю. Д. Экспериментальное исследование семантики русского глагола / Ю. Д. Апресян. — М.: Наука, 1967. — 256 с.
- Апресян, Ю. Д. Исследования по семантике и лексикографии: в 2 т. / Ю. Д. Апресян. — М.: Языки славянских культур, 2009. — Т. 1: Парадигматика. — 568 с.
- Апресян, Ю. Д. Избранные труды: Лексическая семантика (синонимические средства языка) / Ю. Д. Апресян. — 2 изд., испр. и доп. — М.: Языки русской культуры, 1995. — 472 с.
- Абрамов, Б. А. Синтаксические потенции глагола / Б. А. Абрамов // Филологические науки. — 1966. — № 3. — С. 34—44.
- Котелова, Н. З. Значение слова и его сочетаемость (к формализации в языкознании) / Н. З. Котелова. — Л.: Наука, 1975. — 164 с.
- Лингвистический энциклопедический словарь / Под ред. В. Н. Ярцевой; Институт языкознания АН СССР. — М.: Советская энциклопедия, 1990. — 682 с.
- Плунгян, В. А. Общая морфология: Введение в проблематику: Учебное пособие / В. А. Плунгян. — 2-е изд., испр. и доп. — М.: Едиториал УРСС, 2003. — 384 с.
- Семиотика и информатика. Сборник научных статей. Вып. 36. — М.: Русские словари, 1998.
- Тестелец, Я. Г. Введение в общий синтаксис / Я. Г. Тестелец. — М.: Издательство РГГУ, 2001. — 800 с.
Какие бывают характеристики у валентности элементов?
Все вещества, которые обладают валентностью, характеризуются тем, что она у них или постоянна (во всех связях), либо переменная. Постоянная валентность — характеристика очень небольшой группы веществ (водорода, фтора, натрия, калия, кислорода и др. Намного больше в мире атомов, которые обладают переменной валентностью. В разных реакциях, взаимодействуя с разными атомами, они становятся разновалентными. Например, азот в соединении NH3 имеет валентность — III, так как связан с тремя атомами, а в природе он бывает с валентность от одного до четырех. Еще раз повторю, что разная валентность — более распространенное явление.
Валентность химических элементов (Таблица)
Как можно определить валентность в соединениях:
- Валентность водорода (H) постоянна всегда 1. Отсюда в соединении H2O валентность O равна 2.
- Валентность кислорода (O) постоянна всегда 2. Отсюда в соединении СО2 валентность С равно 4.
- Высшая валентность всегда равна № группы.
- Низшая валентность равна разности между числом 8 (количество групп в Таблице Менделеева) и номером группы, в которой находится элемент.
- У металлов в подгруппах А таблицы Менделеева, валентность = № группы.
- У неметаллов обычно две валентности: высшая и низшая.
Валентность химических элементов может быть постоянной и переменной. Постоянная в основном у металлов главных подгрупп, переменная у неметаллов и металлов побочных подгруп.
Таблица валентности химических элементов
Атомный № | Химический элемент | Символ | Валентность химических элементов | Примеры соединений |
1 | Водород / Hydrogen | H | I | HF |
2 | Гелий / Helium | He | отсутствует | — |
3 | Литий / Lithium | Li | I | Li2O |
4 | Бериллий / Beryllium | Be | II | BeH2 |
5 | Бор / Boron | B | III | BCl3 |
6 | Углерод / Carbon | C | IV, II | CO2, CH4 |
7 | Азот / Nitrogen | N | III, IV | NH3 |
8 | Кислород / Oxygen | O | II | H2O, BaO |
9 | Фтор / Fluorine | F | I | HF |
10 | Неон / Neon | Ne | отсутствует | — |
11 | Натрий / Sodium | Na | I | Na2O |
12 | Магний / Magnesium | Mg | II | MgCl2 |
13 | Алюминий / Aluminum | Al | III | Al2O3 |
14 | Кремний / Silicon | Si | IV | SiO2, SiCl4 |
15 | Фосфор / Phosphorus | P | III, V | PH3, P2O5 |
16 | Сера / Sulfur | S | VI, IV, II | H2S, SO3 |
17 | Хлор / Chlorine | Cl | I, III, V, VII | HCl, ClF3 |
18 | Аргон / Argon | Ar | отсутствует | — |
19 | Калий / Potassium | K | I | KBr |
20 | Кальций / Calcium | Ca | II | CaH2 |
21 | Скандий / Scandium | Sc | III | Sc2S3 |
22 | Титан / Titanium | Ti | II, III, IV | Ti2O3, TiH4 |
23 | Ванадий / Vanadium | V | II, III, IV, V | VF5, V2O3 |
24 | Хром / Chromium | Cr | II, III, VI | CrCl2, CrO3 |
25 | Марганец / Manganese | Mn | II, III, IV, VI, VII | Mn2O7, Mn2(SO4)3 |
26 | Железо / Iron | Fe | II, III | FeSO4, FeBr3 |
27 | Кобальт / Cobalt | Co | II, III | CoI2, Co2S3 |
28 | Никель / Nickel | Ni | II, III, IV | NiS, Ni(CO)4 |
29 | Медь / Copper | Сu | I, II | CuS, Cu2O |
30 | Цинк / Zinc | Zn | II | ZnCl2 |
31 | Галлий / Gallium | Ga | III | Ga(OH)3 |
32 | Германий / Germanium | Ge | II, IV | GeBr4, Ge(OH)2 |
33 | Мышьяк / Arsenic | As | III, V | As2S5, H3AsO4 |
34 | Селен / Selenium | Se | II, IV, VI, | H2SeO3 |
35 | Бром / Bromine | Br | I, III, V, VII | HBrO3 |
36 | Криптон / Krypton | Kr | VI, IV, II | KrF2, BaKrO4 |
37 | Рубидий / Rubidium | Rb | I | RbH |
38 | Стронций / Strontium | Sr | II | SrSO4 |
39 | Иттрий / Yttrium | Y | III | Y2O3 |
40 | Цирконий / Zirconium | Zr | II, III, IV | ZrI4, ZrCl2 |
41 | Ниобий / Niobium | Nb | I, II, III, IV, V | NbBr5 |
42 | Молибден / Molybdenum | Mo | II, III, IV, V, VI | Mo2O5, MoF6 |
43 | Технеций / Technetium | Tc | I — VII | Tc2S7 |
44 | Рутений / Ruthenium | Ru | II — VIII | RuO4, RuF5, RuBr3 |
45 | Родий / Rhodium | Rh | I, II, III, IV, V | RhS, RhF3 |
46 | Палладий / Palladium | Pd | I, II, III, IV | Pd2S, PdS2 |
47 | Серебро / Silver | Ag | I, II, III | AgO, AgF2, AgNO3 |
48 | Кадмий / Cadmium | Cd | II | CdCl2 |
49 | Индий / Indium | In | III | In2O3 |
50 | Олово / Tin | Sn | II, IV | SnBr4, SnF2 |
51 | Сурьма / Antimony | Sb | III, IV, V | SbF5, SbH3 |
52 | Теллур / Tellurium | Te | VI, IV, II | TeH2, H6TeO6 |
53 | Иод / Iodine | I | I, III, V, VII | HIO3, HI |
54 | Ксенон / Xenon | Xe | II, IV, VI, VIII | XeF6, XeO4, XeF2 |
55 | Цезий / Cesium | Cs | I | CsCl |
56 | Барий / Barium | Ba | II | Ba(OH)2 |
57 | Лантан / Lanthanum | La | III | LaH3 |
58 | Церий / Cerium | Ce | III, IV | CeO2 , CeF3 |
59 | Празеодим / Praseodymium | Pr | III, IV | PrF4, PrO2 |
60 | Неодим / Neodymium | Nd | III | Nd2O3 |
61 | Прометий / Promethium | Pm | III | Pm2O3 |
62 | Самарий / Samarium | Sm | II, III | SmO |
63 | Европий / Europium | Eu | II, III | EuSO4 |
64 | Гадолиний / Gadolinium | Gd | III | GdCl3 |
65 | Тербий / Terbium | Tb | III, IV | TbF4, TbCl3 |
66 | Диспрозий / Dysprosium | Dy | III | Dy2O3 |
67 | Гольмий / Holmium | Ho | III | Ho2O3 |
68 | Эрбий / Erbium | Er | III | Er2O3 |
69 | Тулий / Thulium | Tm | II, III | Tm2O3 |
70 | Иттербий / Ytterbium | Yb | II, III | YO |
71 | Лютеций / Lutetium | Lu | III | LuF3 |
72 | Гафний / Hafnium | Hf | II, III, IV | HfBr3, HfCl4 |
73 | Тантал / Tantalum | Ta | I — V | TaCl5, TaBr2, TaCl4 |
74 | Вольфрам / Tungsten | W | II — VI | WBr6, Na2WO4 |
75 | Рений / Rhenium | Re | I — VII | Re2S7, Re2O5 |
76 | Осмий / Osmium | Os | II — VI, VIII | OsF8, OsI2, Os2O3 |
77 | Иридий / Iridium | Ir | I — VI | IrS3, IrF4 |
78 | Платина / Platinum | Pt | I, II, III, IV, V | Pt(SO4)3, PtBr4 |
79 | Золото / Gold | Au | I, II, III | AuH, Au2O3, Au2Cl6 |
80 | Ртуть / Mercury | Hg | II | HgF2, HgBr2 |
81 | Талий / Thallium | Tl | I, III | TlCl3, TlF |
82 | Свинец / Lead | Pb | II, IV | PbS, PbH4 |
83 | Висмут / Bismuth | Bi | III, V | BiF5, Bi2S3 |
84 | Полоний / Polonium | Po | VI, IV, II | PoCl4, PoO3 |
85 | Астат / Astatine | At | нет данных | — |
86 | Радон / Radon | Rn | отсутствует | — |
87 | Франций / Francium | Fr | I | — |
88 | Радий / Radium | Ra | II | RaBr2 |
89 | Актиний / Actinium | Ac | III | AcCl3 |
90 | Торий / Thorium | Th | II, III, IV | ThO2, ThF4 |
91 | Проактиний / Protactinium | Pa | IV, V | PaCl5, PaF4 |
92 | Уран / Uranium | U | III, IV | UF4, UO3 |
93 | Нептуний | Np | III — VI | NpF6, NpCl4 |
94 | Плутоний | Pu | II, III, IV | PuO2, PuF3, PuF4 |
95 | Америций | Am | III — VI | AmF3, AmO2 |
96 | Кюрий | Cm | III, IV | CmO2, Cm2O3 |
97 | Берклий | Bk | III, IV | BkF3, BkO2 |
98 | Калифорний | Cf | II, III, IV | Cf2O3 |
99 | Эйнштейний | Es | II, III | EsF3 |
100 | Фермий | Fm | II, III | — |
101 | Менделевий | Md | II, III | — |
102 | Нобелий | No | II, III | — |
103 | Лоуренсий | Lr | III | — |
Номер | Элемент | Символ | Валентность химических элементов | Пример |
Применение
Стоит сказать, что ученые-химики в настоящее время понятие валентности по таблице Менделеева почти не используют. Вместо него для способности вещества образовывать определенное число взаимосвязей применяют понятие степени окисления, для веществ с ковалентной структурой — ковалентность, а для веществ ионного строения — заряд иона.
Однако рассматриваемое понятие применяют в методических целях. С его помощью легко объяснить, почему атомы разных видов соединяются в тех соотношениях, которые мы наблюдаем, и почему эти соотношения для разных соединений различны.
На данный момент подход, согласно которому соединение элементов в новые вещества всегда объяснялось с помощью валентности по таблице Менделеева независимо от типа связи в соединении, устарел. Сейчас мы знаем, что для ионной, ковалентной, металлической связей существуют разные механизмы объединения атомов в молекулы.
Валентность элементов
До сих пор вы пользовались химическими формулами веществ, приведенными в учебнике, или теми, которые вам называл учитель. Как же правильно составлять химические формулы?
Химические формулы веществ составляются на основе знания качественного и количественного состава вещества. Веществ существует гигантское количество, естественно запомнить все формулы невозможно
Это и не нужно! Важно знать определенную закономерность, согласно которой атомы способны соединяться друг с другом с образованием новых химических соединений. Такая способность называется валентностью
Валентность – свойство атомов элементов присоединять определенное число атомов других элементов Рассмотрим модели молекул некоторых веществ, таких, как вода, метан и углекислый газ.
Видно, что в молекуле воды атом кислорода присоединяет два атома водорода. Следовательно, его валентность равна двум. В молекуле метана атом углерода присоединяет четыре атома водорода, его валентность в данном веществе равна четырем. Валентность водорода в обоих случаях равна одному.
Такую же валентность углерод проявляет и в углекислом газе, но в отличие от метана, атом углерода присоединяет два атома кислорода, так как валентность кислорода равна двум. Существуют элементы, валентность которых не меняется в соединениях. О таких элементах говорят, что они обладают постоянной валентностью. Если же валентность элемента может быть различной – это элементы с переменной валентностью. Валентность некоторых химических элементов приведена в таблице 2. Валентность принято обозначать римскими числами. Таблица 2. Валентность некоторых химических элементов
Символ элемента | Валентность | Символ элемента | Валентность |
H, Li, Na, K, F, Ag | I | C, Si, Sn, Pb | II, IV |
Be, Mg, Ca, Ba, Zn, O | II | N | I, II, III, IV |
Al, B | III | P, As, Sb | III, V |
S | II, IV, VI | Cl | I, II,III, IV,V, VII |
Br, I | I, III, V | Ti | II, III, IV |
Стоит отметить, что высшая валентность элемента численно совпадает с порядковым номером группы Периодической Системы, в которой он находится. Например, углерод находиться в IV группе, его высшая валентность равна IV. Исключение составляют три элемента:
- азот – находится в V группе, но его высшая валентность IV;
- кислород – находится в VI группе, но его высшая валентность II;
- фтор – находится в VII группе, но его высшая валентность – I.
Исходя из того, что все элементы расположены в восьми группах Периодической Системы, валентность может принимать значения от I до VIII.