Уравнение — что такое? определение термина, примеры

Следствие уравнения и посторонние корни

Уравнение

F(x)=G(x){\displaystyle F\left(x\right)=G\left(x\right)}

называется следствием уравнения

f(x)=g(x){\displaystyle f\left(x\right)=g\left(x\right)},

если все корни второго уравнения являются корнями первого. Первое уравнение может иметь дополнительные корни, которые для второго уравнения называются посторонними. Посторонние корни могут появиться при преобразованиях, необходимых для нахождения корней уравнений. Для того чтобы их обнаружить, необходимо проверить корень подстановкой в исходное уравнение. Если при подстановке уравнение становится тождеством, то корень настоящий, если нет — посторонний.

Пример

Уравнение 2×2−1=x{\displaystyle {\sqrt {2x^{2}-1}}=x} при возведении обеих частей в квадрат даёт уравнение 2×2−1=x2{\displaystyle 2x^{2}-1=x^{2}}, или x2=1{\displaystyle x^{2}=1}. Оба уравнения являются следствием исходного. Последнее из них легко решить; оно имеет два корня x=1{\displaystyle x=1} и x=−1{\displaystyle x=-1}.

При подстановке первого корня в исходное уравнение образуется тождество 1=1{\displaystyle {\sqrt {1}}=1}. При подстановке другого корня получается неправильное утверждение 1=−1{\displaystyle {\sqrt {1}}=-1}. Таким образом, второй корень нужно отбросить как посторонний.

Квадратные уравнения

Уравнение - что такое? определение термина, примеры

Кроме рассмотренных ранее примеров, существуют и другие. Какие именно? Квадратное уравнение, что такое? Они имеют вид ax2+bx+c=0. Для их решения необходимо ознакомиться с некоторыми понятиями и правилами.

Во-первых, нужно найти дискриминант по формуле: b2-4ac. Есть три варианта исхода решения:

  • дискриминант больше нуля;
  • меньше нуля;
  • равен нулю.

В первом варианте мы можем получить ответ из двух корней, которые находятся по формуле: -b+-корень из дискриминанта разделенные на удвоенный первый коэфициент, то есть 2а.

Во втором случае корней у уравнения нет. В третьем случае корень находится по формуле: -b/2а.

Рассмотрим пример квадратного уравнения для более подробного знакомства: три икс в квадрате минус четырнадцать икс минус пять равняется нулю. Для начала, как и писалось ранее, ищем дискриминант, в нашем случае он равен 256. Отметим, что полученное число больше нуля, следовательно, мы должны получить ответ состоящих из двух корней. Подставляем полученный дискриминант в формулу нахождения корней. В результате мы имеем: икс равняется пяти и минус одной третьей.

Особые случаи в квадратных уравнениях

Уравнение - что такое? определение термина, примеры

Это примеры, в которых некоторые значения равны нулю (а, b или с), а возможно и несколько.

Для примера возьмем следующее уравнение, которое является квадратным: два икс в квадрате равняется нулю, здесь мы видим, что b и с равны нулю. Попробуем его решить, для этого обе части уравнения делим на два, мы имеем: х2=0. В итоге получаем х=0.

Другой случай 16х2-9=0. Здесь только b=0. Решим уравнение, свободный коэфициент переносим в правую часть: 16х2=9, теперь каждую часть делим на шестнадцать: х2= девять шестнадцатых. Так как у нас х в квадрате, то корень из 9/16 может быть как отрицательным, так и положительным. Ответ записываем следующим образом: икс равняется плюс/минус три четвертых.

Возможен и такой вариант ответа, как у уравнения корней вовсе нет. Посмотрим на такой пример: 5х2+80=0, здесь b=0. Для решения свободный член перекидываете в правую сторону, после этих действий получаем: 5х2=-80, теперь каждую часть делим на пять: х2= минус шестнадцать. Если любое число возвести в квадрат, то отрицательное значение мы не получим. По этому наш ответ звучит так: у уравнения корней нет.

Уравнения сводящиеся к квадратному

В данном пункте научимся решать более сложные уравнения. Начнем сразу с примера:

(x2 – 2x)2 – 2(x2 – 2x) – 3 = 0. Можем заметить повторяющиеся элементы: (x2 – 2x), нам для решения удобно заменить его на другую переменную, а далее решать обычное квадратное уравнение, сразу отмечаем, что в таком задании мы получим четыре корня, это не должно вас пугать. Обозначаем повторение переменной а. Мы получаем: а2-2а-3=0. Наш следующий шаг — это нахождение дискриминанта нового уравнения. Мы получаем 16, находим два корня: минус один и три. Вспоминаем, что мы делали замену, подставляем эти значения, в итоге мы имеем уравнения: x2 – 2x=-1; x2 – 2x=3. Решаем их в первом ответ: х равен единице, во втором: х равен минусу одному и трем. Записываем ответ следующим образом: плюс/минус один и три. Как правило, ответ записывают в порядке возрастания.

Математика. Уравнения

Для начала предлагаем разобраться с самим понятием, что это такое? Как гласят многие учебники математики, уравнение — это некоторые выражения, между которыми стоит обязательно знак равенства. В этих выражениях присутствуют буквы, так называемые переменные, значение которых и необходимо найти.

Что такое переменная? Это атрибут системы, который меняет свое значение. Наглядным примером переменных являются:

  • температура воздуха;
  • рост ребенка;
  • вес и так далее.

В математике они обозначаются буквами, например, х, а, b, с… Обычно задание по математике звучит следующим образом: найдите значение уравнения. Это значит, что необходимо найти значение данных переменных.

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения x = f(x)

Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными».

Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения.

Про корни говорят, что они удовлетворяют данному уравнению.

Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.

Равносильные уравнения

Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней.

Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому.

Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения.

Третье важное свойство задаётся теоремой: если функции f,g{\displaystyle f,g} заданы над областью целостности, то уравнение

f(x)⋅g(x)={\displaystyle f(x)\cdot g(x)=0}

эквивалентно совокупности уравнений

f(x)=,g(x)={\displaystyle f(x)=0,\qquad g(x)=0}.

Это означает, что все корни первого уравнения являются корнями одного из двух других уравнений, и позволяет находить корни первого уравнения в два приёма, решая каждый раз более простые уравнения.

Основные свойства

С алгебраическими выражениями, входящими в уравнения, можно выполнять операции, которые не меняют его корней, в частности:

  1. в любой части уравнения можно раскрыть скобки;
  2. в любой части уравнения можно привести подобные слагаемые;
  3. любой член уравнения можно перенести из одной части в другую, заменив его знак на противоположный;
  4. к обеим частям уравнения можно прибавить одно и то же выражение;
  5. из обеих частей уравнения можно вычесть одно и то же выражение;
  6. обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.

Уравнения, которые являются результатом этих операций, являются эквивалентными начальному уравнению. Однако для свойств 4 и 5 существует ограничение: в случае прибавления к обеим частям уравнения одного и того же выражения (или в случае вычитания из обеих частей уравнения одного и того же выражения), содержащего неизвестное и теряющего смысл при неизвестном, принимающем значения корней данного уравнения, получится уравнение, неэквивалентное исходному (начальному). Но если к обеим частям уравнения прибавить одно и то же выражение (или из обеих частей уравнения вычесть одно и то же выражение), содержащее неизвестное и теряющее смысл лишь при значениях неизвестного, не являющихся корнями данного уравнения, то получится уравнение, эквивалентное начальному.

Умножение или деление обеих частей уравнения на выражение, содержащее неизвестное, может привести, соответственно, к появлению посторонних корней или к потере корней.

Возведение обеих частей уравнения в квадрат может привести к появлению посторонних корней.

Линейное уравнение

Это первый вид, с которым знакомятся школьники. Они решаются довольно-таки быстро и просто. Итак, линейное уравнение, что такое? Это выражение вида: ах=с. Так не особо понятно, поэтому приведем несколько примеров: 2х=26; 5х=40; 1,2х=6.

Уравнение - что такое? определение термина, примеры

Разберем примеры уравнений. Для этого нам необходимо все известные данные собрать с одной стороны, а неизвестные в другой: х=26/2; х=40/5; х=6/1,2. Здесь использовались элементарные правила математики: а*с=е, из этого с=е/а; а=е/с. Для того чтобы завершить решение уравнения, выполним одно действие (в нашем случае деление) х=13; х=8; х=5. Это были примеры на умножение, теперь просмотрим на вычитание и сложение: х+3=9; 10х-5=15. Известные данные переносим в одну сторону: х=9-3; х=20/10. Выполняем последнее действие: х=6; х=2.

Также возможны варианты линейных уравнений, где используется более одной переменной: 2х-2у=4. Для того чтобы решить, необходимо к каждой части прибавить 2у, у нас получается 2х-2у+2у=4-2у, как мы заметили, по левую часть знака равенства -2у и +2у сокращаются, при этом у нас остается: 2х=4-2у. Последним шагом делим каждую часть на два, получаем ответ: икс равен два минус игрек.

Задачи с уравнениями встречаются даже на папирусах Ахмеса. Вот одна из задач: число и четвертая его часть дают в сумме 15. Для ее решения мы записываем следующее уравнение: икс плюс одна четвертая икс равняется пятнадцати. Мы видим еще один пример линейного уравнения, по итогу решения, получаем ответ: х=12. Но эту задачу можно решить и другим способом, а именно египетским или, как его называют по-другому, способом предположения. В папирусе используется следующее решение: возьмите четыре и четвертую ее часть, то есть единицу. В сумме они дают пять, теперь пятнадцать необходимо разделить на сумму, мы получаем три, последним действием три умножаем на четыре. Мы получаем ответ: 12. Почему мы в решении пятнадцать делим на пять? Так узнаем, во сколько раз пятнадцать, то есть результат, который нам необходимо получить, меньше пяти. Таким способом решали задачи в средние века, он стал зваться методом ложного положения.

admin
Оцените автора
( Пока оценок нет )
Добавить комментарий