График функции

Примеры

Функция График функции Описание
f(x)={−1,x<,x=1,x>{\displaystyle f(x)={\begin{cases}-1,&x<0\\0,&x=0\\1,&x>0\end{cases}}} Функция y=sgn⁡(x).{\displaystyle y=\operatorname {sgn}(x).} В точке x=  y={\displaystyle x=0~~y=0.}
f(x)={,x=18,x=215,x=3{\displaystyle f(x)={\begin{cases}0,&x=1\\8,&x=2\\15,&x=3\end{cases}}} Пример графика функции, определённой только в трёх точках {1,2,3}{\displaystyle \{1,2,3\}} и содержит только три точки с координатами (1,){\displaystyle (1,0)}, (2,8){\displaystyle (2,8)} и (3,15).{\displaystyle (3,15).}
f(x)=sin⁡(x){\displaystyle f(x)=\sin(x)}f(x)=cos⁡(x){\displaystyle f(x)=\cos(x)}f(x)=tg⁡(x){\displaystyle f(x)=\operatorname {tg} (x)}f(x)=ctg⁡(x){\displaystyle f(x)=\operatorname {ctg} (x)}f(x)=sec⁡(x){\displaystyle f(x)=\sec(x)}f(x)=cosec⁡(x){\displaystyle f(x)=\operatorname {cosec} (x)} Графики тригонометрических функций: синуса, косинуса, тангенса, котангенса, секанса, косеканса
f(x)=1x{\displaystyle f(x)={\frac {1}{x}}} График гиперболы. При x={\displaystyle x=0} претерпевает и в точке x={\displaystyle x=0} не определена.
f(x)=bx{\displaystyle f(x)=b^{x}} Графики функций y=bx{\displaystyle y=b^{x}} различными основаниями b{\displaystyle b}:

основание: 10
основание: e
основание: 2
основание: 12
Каждая кривая проходит через точку (0, 1).

f(x)=x3−9x{\displaystyle f(x)=x^{3}-9x} График f(x)=x3−9x{\displaystyle f(x)=x^{3}-9x} кубического многочлена вещественной переменной, это множество {(x,x3−9x)∈R2 |x∈R}{\displaystyle \{(x,x^{3}-9x)\in \mathbb {R} ^{2}\ |x\in \mathbb {R} \}}.

Сдвиг графика влево/вправо вдоль оси абсцисс

Если к АРГУМЕНТУ функции  добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси . Рассмотрим функцию  и положительное число :

Правила:
1) чтобы построить график функции , нужно график  сдвинуть ВДОЛЬ оси  на  единиц влево;
2) чтобы построить график функции , нужно график  сдвинуть ВДОЛЬ оси  на  единиц вправо.

Пример 6

Построить график функции

Берём параболу  и сдвигаем её вдоль оси абсцисс на 1 единицу вправо:
«Опознавательным маячком» служит значение , именно здесь находится вершина параболы .

Теперь, думаю, ни у кого не возникнет трудностей с построением графика  (демонстрационный пример начала урока) – кубическую параболу  нужно сдвинуть на 2 единицы влево.

Вот ещё один характерный случай:

Пример 7

Построить график функции

Гиперболу  (чёрный цвет) сдвинем вдоль оси  на 2 единицы влево:
Перемещение гиперболы «выдаёт» значение, которое не входит в область определения функции. В данном примере , и уравнение прямой   задаёт вертикальную асимптоту (красный пунктир) графика функции  (красная сплошная линия). Таким образом, при параллельном переносе асимптота графика тоже сдвигается (что очевидно).

Вернёмся к тригонометрическим функциям:

Пример 8

Построить график функции  

График синуса  (чёрный цвет) сдвинем вдоль оси  на  влево:
Внимательно присмотримся к полученному красному графику …. Это в точности график косинуса ! По сути, мы получили геометрическую иллюстрацию формулы приведения , и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции.  График  функции  получается путём сдвига синусоиды  вдоль оси  на  единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций). Аналогично можно убедиться в справедливости любой другой формулы приведения.

Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: , при этом параметр «ка» не равен нулю или единице, параметр «бэ» – не равен нулю. Как построить график такой функции? Из школьного курса мы знаем, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем/растягиваем/отображаем в зависимости от значения , а потом сдвигаем на  единиц. Но здесь есть подводный камень, и корректный алгоритм таков:

Аргумент функции необходимо представить в виде  и последовательно выполнить следующие преобразования:

1) График функции  сжимаем (или растягиваем) к оси (от оси) ординат: (если , то график дополнительно следует отобразить симметрично относительно оси ).

2) График полученной функции  сдвигаем влево (или вправо) вдоль оси  абсцисс на  (!!!) единиц, в результате чего будет построен искомый график .

Пример 9

Построить график функции  

Представим функцию в виде  и выполним следующие преобразования: синусоиду  (чёрный цвет):

1) сожмём к оси  в два раза: (синий цвет);
2) сдвинем вдоль оси  на  (!!!) влево:  (красный цвет):
Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого. График сдвигается на , а вовсе не на .

Продолжаем расправляться с функциями начала урока:

Пример 10

Построить график функции  

Представим функцию в виде . В данном случае:  Построение проведём в три шага. График натурального логарифма :

1) сожмём к оси  в 2 раза: ;
2) отобразим симметрично относительно оси : ;
3) сдвинем вдоль оси  на  (!!!) вправо: :
Для самоконтроля в итоговую функцию  можно подставить пару значений «икс», например,  и свериться с полученным графиком.

В рассмотренных параграфах события происходили «горизонтально» – гармонь играет, ноги пляшут влево/вправо. Но похожие преобразования происходят и в «вертикальном» направлении – вдоль оси . Принципиальное отличие состоит в том, что связаны они не с АРГУМЕНТОМ, а с САМОЙ ФУНКЦИЕЙ.

Определение графика

При рассмотрении отображения произвольного вида fX→Y{\displaystyle f:X\to Y}, действующего из множества X{\displaystyle X} в множество Y{\displaystyle Y}, графиком функции называется следующее множество упорядоченных пар:

Γf={(x,f(x))∈X×Y∣x∈X}.{\displaystyle \Gamma _{f}=\{\,(x,f(x))\in X\times Y\mid x\in X\,\}.}

В частности, при рассмотрении динамических систем, изображающая точка (t,f(t)){\displaystyle (t,f(t))} представляет собою график решения соответствующего дифференциального уравнения с заданными начальными условиями такой график часто называют фазовой траекторией системы.

Графики функций с модулем

Для качественного усвоения материала необходимо понимать, что такое модуль. Краткую информацию о нём можно найти на странице Математические формулы и таблицы в справочном материале Горячие формулы школьного курса математики.

Применение модуля тоже представляет собой геометрическое преобразование графика. Не буду создавать сверхподробный мануал, отмечу только те моменты, которые, с моей точки зрения, реально пригодятся для решения других задач по вышке.

Сначала посмотрим, что происходит, когда модуль применяется к АРГУМЕНТУ функции.

Правило: график функции  получается из графика функции  следующим образом: при  график функции  сохраняется, а при  «сохранённая часть» отображается симметрично относительно оси .

Пример 22

Построить график функции

И снова вечная картина:
Согласно правилу, при  график сохраняется:
И сохранившаяся часть отображается симметрично относительно оси   в левую полуплоскость:

Действительно, функция  – чётная, и её график симметричен относительно оси ординат. Поясню детальнее смысл симметрии. Посмотрим на два противоположных значения аргумента, например, на  и . А какая разница? Модуль всё равно уничтожит знак «минус»: , то есть значения функции будут располагаться на одной высоте.

Функцию от модуля можно расписать в так называемом кусочном виде по следующему правилу: . В данном случае:

То есть, правая волна графика  задаётся функцией , а левая волна – функцией  (см. Пример 13).

Пример 23

Построить график функции

Аналогично, ветвь «обычной» экспоненты  правой полуплоскости отображаем симметрично относительно оси  в левую полуплоскость:
Распишем функцию в кусочном виде: , то есть правая ветвь задаётся графиком функции , а левая ветвь графиком .

Модуль не имеет смысл «навешивать» на аргумент чётной функции:  и т.п. (проанализируйте, почему).

И, наконец, завершим статью весёлой нотой – применим модуль к САМОЙ ФУНКЦИИ.

Правило: график функции  получается из графика функции  следующим образом: часть графика , лежащая НАД осью  сохраняется, а часть графика , лежащая ПОД осью  отображается симметрично относительно данной оси.

Странно, что широко известный график модуля «икс» оказался на 24-й позиции, но факт остаётся фактом =)

Пример 24

Построить график функции

Сначала начертим прямую, известную широкому кругу лиц:
Часть графика, которая ВЫШЕ оси , остаётся неизменной, а часть графика, которая НИЖЕ оси  – отображается симметрично в верхнюю полуплоскость:

Модуль функции также раскрывается аналитически в кусочном виде:

Внимание! Формула отличается от формулы предыдущего пункта!

В данном случае: , действительно, правый луч задаётся уравнением , а левый луч – уравнением .

Кстати,  – редкий экземпляр, когда можно считать, что модуль применён, как к аргументу: , так и  к самой функции: . Изучим более «жизненную» ситуацию:

Пример 25

Построить график функции

Сначала изобразим график линейной функции :
То, что ВЫШЕ оси абсцисс – не трогаем, а то, что НИЖЕ – отобразим симметрично относительно оси  в верхнюю полуплоскость:

Согласно формуле , распишем функцию аналитически в кусочном виде: .

Или, упрощая оба этажа: , то есть правый луч задаётся функцией , а левый луч – функцией . Сомневающиеся могут взять несколько значений «икс», выполнить подстановку и свериться с графиком.

На какие функции модуль «не действует»? Модуль бессмысленно применять к неотрицательным функциям. Например: . Экспоненциальная функция и так полностью лежит в верхней полуплоскости: .

Всё возвращается на круги своя, синусом начали, синусом и закончим. Как в старой доброй сказке:

Пример 26

Построить график функции .

Изобразим сами знаете что =)

И снова – то, что находиться в верхней полуплоскости – оставим в покое, а содержимое подвала – отобразим симметрично относительно оси :

Кстати, понятен ли вам неформальный смысл такого симметричного отображения? Модуль «съедает» у  отрицательных чисел знак и делает их положительными, именно поэтому «подвальные» точки занимают противоположные места в верхней полуплоскости.

Распишем функцию в кусочном виде:

Решив два простейших школьных неравенства , получаем:, где  – любое целое число.

Да, статья была не самой приятной, но крайне необходимой. Однако повествование завершилось и стало немножко грустно =) Чем-то напомнило мне всё это урок про метод Симпсона, который тоже создавался в марте, и тоже достаточно долгое время. Наверное, громоздкие вещи пишутся по сезону =)

Желаю успехов!

(Переход на главную страницу)

График линейной функции

Линейная функция задается уравнением . График линейной функций представляет собой прямую. Для того, чтобы построить прямую достаточно знать две точки.

Пример 1

Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

Если , то

Берем еще какую-нибудь точку, например, 1.

Если , то

При оформлении заданий координаты точек обычно сводятся в таблицу:

 
А сами значения рассчитываются устно или на черновике, калькуляторе.

Две точки найдены, выполним чертеж:

График функцииПри оформлении чертежа всегда подписываем графики.

Не лишним будет вспомнить частные случаи линейной функции:

Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа. В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых  ,  или справа внизу между графиками

1) Линейная функция вида  () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

2) Уравнение вида  задает прямую, параллельную оси , в частности, сама ось  задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись  следует понимать так: «игрек всегда равен –4, при любом значении икс».

3) Уравнение вида  задает прямую, параллельную оси , в частности, сама ось  задается уравнением . График функции также строится сразу. Запись  следует понимать так: «икс всегда, при любом значении игрек, равен 1».

Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде  или .

Построение прямой – самое распространенное действие при выполнении чертежей.

Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости.