Экзопланеты

Определение

Что такое экзопланета? Это небесное тело, подобно Земле, вращающееся вокруг своего светила — звезды. На сегодняшний день их открыто около трех тысяч. Подавляющее большинство из них – газовые гиганты, подобные нашим Юпитеру, Нептуну и Сатурну, но значительно превышающие их по массе. Жизнь на таких раскаленных небесных телах в привычном нам понимании, то есть в белковой форме, скорей всего, отсутствует.

На январь 2018 года официально подтверждено существование 3726 экзопланет, и около тысячи этих небесных тел еще ожидают официального подтверждения своего статуса с помощью земных телескопов.

Экзопланеты

От больших к малым

Почти каждая открытая поначалу экзопланета – это огромный юпитероподобный (или еще больше) газовый гигант, вращающийся на небольшом расстоянии от своей родительской звезды. Объясняется это тем, что астрономы использовали технику измерения радиальной скорости, определяющей степень «раскачивания» звезды при обращении планет вокруг нее. Большие близкорасположенные космические тела оказывали настолько значительное влияние, что его можно было легко обнаружить.

До эпохи открытий экзопланет приборы могли измерить только движения звезд с точностью до километра в секунду, что было недостаточным для обнаружения их колебаний под влиянием планет. Современные приборы способны измерять скорость до сантиметра в секунду, частично из-за повышения точности оборудования, но также и по причине большей опытности астрономов в выделении из данных слабых сигналов.

Экзопланеты Земного типа

Эти экзопланеты похожи на Землю и они могут быть пригодны для жизни.

Kepler-452b

Эта планета находится на расстоянии 1400 световых лет и она в 1,6 раза больше Земли.

Исследователи утверждают, что эта планета является самой похожей на Землю. Звезда этой планеты схожа с Солнцем. И планета вращается в обитаемой зоне. Исследователи утверждают, что почти уверены, что она каменистая (как Земля).

Глизе 667 C c

Эта экзопланета находится в 22 световых годах и она примерно в 4,5 раза больше Земли. Но ещё неизвестно каменистая эта планета или нет.

Экзопланета GJ 357 d

Эта планета находится на расстоянии около 31 светового года от Земли. И так же может поддерживать жизнь — существуют предположения, что на её поверхности может существовать вода.

Учёные предполагают, что эта экзопланета примерно в 2 раза больше Земли, и по массе она её превышает в 6 раз.

Kepler-186f

Эта планета находится на расстоянии около 500 световых лет от Земли и она не более чем на 10% больше Земли. Вероятно эта планета тоже находится в обитаемой зоне, хотя и получает только 1/3 энергии от своей звезды, по сравнению с тем, что Земля получает от Солнца.

Кеплер-22б (Kepler-22 b)

Она находится на расстоянии 600 световых лет. Это была первая планета Кеплер, найденная в зоне её звезды.

Неизвестно является ли поверхность этой планеты каменистой, жидкой или даже газообразной.

Kepler-442b

Эта экзопланета находится на расстоянии 1100 световых лет и она в 2,36 раз больше Земли. Существует большая вероятность того, что эта планета каменистая. Её открыли в 2015 году.

Kepler-69c

Эта экзопланета уже находится на расстоянии 2700 световых лет, и она на 70% больше Земли. Но и в этом случае учёные не уверены из чего она состоит.

Однако и эта планета находится в обитаемой зоне, из-за своего положения к своей звезде.

А есть ли там жизнь

Сейчас известно огромное количество экзопланет, а если еще считать кандидатов в экзопланеты, то их количество уже превышает 20 тысяч. Часть из них, даже из известных планет, потенциально могут быть обитаемыми. Как же мы можем убедиться в том, что на этих планетах есть или может быть жизнь?

Определить есть ли на экзопланете жизнь земного типа помогают биомаркеры — вещества, которые говорят о том, что на планете могут существовать растения или микроорганизмы. Основных биомаркеров пять: кислород, озон, вода, метан и углекислый газ. Каждый из них по отдельности может иметь естественное происхождение, в то время как их комбинации могут указывать на жизнь земного типа.

Если эта пятерка присутствует в атмосфере планеты, которая по массе и радиусу похожа на Землю и находится в зоне обитаемости (расстояние от экзопланеты до звезды, на котором планета может получать энергию от своей звезды), то вероятность, что там присутствует жизнь земного типа, велика.

ЭкзопланетыФото: pexels.com

Изображения экзопланет

В данный момент существует лишь несколько десятков изображений экзопланет. Чтобы выделить свет от планеты, необходимо «перекрыть» свет от звезды, вокруг которой обращается планета (либо до попадания света на приёмник излучения, либо после — программными методами). Соответственно, легче сфотографировать большую планету, находящуюся в значительном удалении от своей звезды. Причём в инфракрасной области спектра выделить свет экзопланеты рядом со звездой оказывается проще.

Первой планетой, открытой в 2004 году с помощью получения её изображения, является объект с именем 2M1207 b.

Фотография системы 2M1207 в инфракрасном диапазоне. Слева — планета, справа — коричневый карлик

Изображение 2M1207 b — газового гиганта, обращающегося вокруг коричневого карлика 2M1207 (на расстоянии, в 55 раз превышающем расстояние между Солнцем и Землёй), было получено с помощью одного из телескопов системы VLT. Эту же область неба в созвездии Центавра наблюдал телескоп «Хаббл» с целью подтверждения совместного движения компонент. Поток излучения от планеты, которая, возможно, продолжает сжиматься, в этой системе всего в сотню раз меньше, чем поток от карлика 2M1207 (для сравнения, при наблюдении Солнечной системы со стороны ярчайшие планеты будут иметь блеск примерно в миллиард раз слабее, чем Солнце). В конце 2015 года появилась работа, в которой с помощью точных фотометрических наблюдений был установлен период вращения планеты 2M1207 b, который составляет примерно 10 часов.

Первой «сфотографированной» планетной системой стала HR 8799 в созвездии Пегаса.

Планетная система звезды HR 8799. Планеты обозначены буквами b, c, e, d. В центре — артефакты вычитания из изображения света звезды

Планетная система состоит из гигантов, в пять (HR 8799 b) и в семь раз массивнее Юпитера (HR 8799 с, HR 8799 e, HR 8799 d), при этом размер планетной системы близок к размеру Солнечной системы. О получении снимков этой планетной системы с помощью телескопов обсерваторий Кека и Гемини исследователи объявили в 2008 году.

Ранние открытия экзопланет

Хотя официально наличие экзопланет не подтверждали до 1990-х годов, астрономы знали, что они там есть. И это не строилось на фантазиях и сильном желании. Достаточно было посмотреть на медлительность вращения нашей звезды и планет.

Ученые владели главным механизмом – история появления Солнечной системы. Они знали, что существовало газовое и пылевое облако, не выдержавшее давления собственной гравитации и рухнувшее в себя. В момент крушения появилось Солнце и планеты. Сохранение углового момента обеспечило ускорение для будущей звезды. Солнце вмещает 99.8% массы всей системы, а у планет – 96% момента движения. Поэтому исследователи не уставали удивляться медлительности нашей звезды.

Экзопланеты

Наиболее юная экзопланета достигает возраста меньше миллиона лет и вращается вокруг звезды Coku Tau 4, удаленной на 420 световых лет. Ученым удается заметить ее из-за большого пробела, присутствующего в звездном диске. Она в 10 раз крупнее земной орбиты и скорее всего создается во время вращения планеты, очищающей пространство диска от пыли.

Они начали искать исключительно звезды, напоминающие нашу. Но ранние находки в 1992 году неожиданно привели к пульсару (мертвая звезда с быстрой скоростью вращения после взрыва сверхновой) – PSR 1257+12. В 1995 году обнаружился первый мир – 51 Пегаса b. По размеру напоминал Юпитер, но располагался ближе к своей звезде. Это было удивительное и шокирующее открытие. Но прошло 7 лет, и мы нашли новую планету, намекающую на то, что Вселенная богата на миры.

В 1998 году команда из Канады заметила мир образца Юпитер возле Гамма Цефея. Но ее орбитальный путь был намного меньше, чем у Юпитера, и ученые не претендовали на исследование находки.

Увидеть или угадать?

Самый простой способ поиска экзопланет — прямое наблюдение. Именно так в свое время искали околосолнечные планеты, лежащие за Сатурном: достаточно просто смотреть в телескоп (точнее, анализировать оцифрованные звездные снимки). В принципе (а с недавнего времени и на практике) это вполне решаемая задача — был бы телескоп помощнее да матрица почувствительней.

Однако шансы на успех невелики. Скажем, для звезды солнечного типа на расстоянии 15 световых лет от нас, вокруг которой на расстоянии приблизительно 5 астрономических единиц обращается газовый гигант размером с Юпитер. На земном небе угловое расхождение между такой звездой и ее спутником составит приблизительно одну угловую секунду, что вполне доступно современным телескопам. Но вот беда — контраст маловат. В оптическом спектре мощность звездного излучения превышает отраженный планетарный отблеск в миллиард раз, а в ИК-диапазоне — в миллион. Поэтому подобные открытия пока что возможны лишь в исключительных случаях. В 2004 году один из восьмиметровых телескопов Южной Европейской обсерватории зафиксировал планету с массой в пять Юпитеров, обращающуюся вокруг коричневого карлика 2 М 1207 (70 парсеков от Солнца) на расстоянии двух радиусов орбиты Нептуна (55 астрономических единиц). Однако французским и американским астрономам, которые год спустя опубликовали сообщение об этом открытии, крупно повезло. Материнская звезда в данном случае светит настолько слабо, что инфракрасный контраст между ее излучением и планетарным светом составляет всего 100:1. Первая в истории «прямая» фотография звездно-планетной пары (впрочем, сделанная с помощью адаптивной оптики) вполне заслуженно попала на страницы газет. Впоследствии с помощью инфракрасной фотографии удалось найти еще несколько кандидатов в экзопланеты (по разным оценкам, от пяти до семи). А в ноябре 2008 года американские астрономы сообщили о первой идентификации ранее неизвестной экзопланеты на фотоснимках в видимом свете (это небесное тело с массой от половины до трех масс Юпитера обращается вокруг любимой фантастами звезды Фомальгаут из созвездия Южной Рыбы). Впрочем, можно надеяться, что новые изображения такого рода в следующем десятилетии принесет орбитальный телескоп James Webb и пока еще не построенные наземные телескопы особо крупного калибра.

История открытий

Экзопланеты

Количество экзопланет, открытых разными способами: Радионаблюдение пульсаров Метод радиальных скоростей Транзитный метод Метод синхронизации Визуальное наблюдение Гравитационное линзирование Астрометрический метод

Экзопланеты

Анимация хронологии открытия экзопланет. Цвет точки означает метод открытия. Горизонтальная ось — размер большой полуоси. Вертикальная ось — масса. Для сравнения белым цветом обозначены планеты солнечной системы

Солнечной системы

В конце 1980-х годов многие группы астрономов начали систематическое измерение скоростей ближайших к Солнцу звёзд, ведя специальный поиск экзопланет с помощью высокоточных спектрометров.

Впервые внесолнечная планета (Тадмор) была найдена канадцами Б. Кэмпбеллом, Г. Уолкером и С. Янгом в 1988 году у оранжевого субгиганта Гамма Цефея A (Альраи), но её существование было подтверждено лишь в 2002 году.

В 1989 году сверхмассивная планета (или коричневый карлик) была найдена Д. Латамом около звезды HD 114762 A. Однако её планетный статус был подтверждён только в 1999 году.

Первые экзопланеты — Драугр и Полтергейст — были обнаружены у нейтронной звезды Лич (PSR 1257+12), их открыл астроном Александр Вольшчан в 1991 году. Эти планеты были признаны вторичными, возникшими уже после взрыва сверхновой.

В 1995 году астрономы Мишель Майор (Michel Mayor) и Дидье Келос (Didier Queloz) с помощью сверхточного спектрометра обнаружили покачивание звезды Гельвеций (51 Пегаса) с периодом 4,23 сут. Планета Димидий, вызывающая покачивания, напоминает Юпитер, но находится в непосредственной близости от светила. В среде астрономов планеты этого типа называют «горячими юпитерами».

В дальнейшем путём измерения лучевой скорости звёзд и поиска их периодического доплеровского изменения (метод Доплера) было обнаружено несколько сотен экзопланет.

В августе 2004 года в системе звезды Сервантес (μ Жертвенника) была обнаружена первая планета — горячий нептун Кихот. Она обращается вокруг светила за 9,55 суток, на расстоянии 0,09 а. е., температура на поверхности ~ 900 K (+626 °C), масса ~ 14 масс Земли.

Первая сверхземля, обращающаяся вокруг нормальной звезды (а не пульсара), была обнаружена в 2005 году около звезды Глизе 876. Её масса — 7,5 масс Земли.

В 2004 году было получено первое изображение (в инфракрасных лучах) кандидата в экзопланеты у коричневого карлика 2M1207.

13 ноября 2008 года впервые удалось получить изображение сразу целой планетной системы — снимок трёх планет, обращающихся вокруг звезды HR 8799 в созвездии Пегаса. Это первая планетная система, открытая у горячей белой звезды раннего спектрального класса (А5). Все открытые ранее планетные системы (за исключением планет у пульсаров) были обнаружены вокруг звёзд более поздних классов (F-M).

13 ноября 2008 года также впервые удалось обнаружить планету Дагон вокруг звезды Фомальгаут путём прямых наблюдений.

В 2011 году Дэвид Беннетт из Университета Нотр-Дам (Индиана, США) объявил на основе наблюдений 2006—2007 годов на 1,8-метровом телескопе Университетской обсерватории Маунт-Джон в Новой Зеландии об открытии с помощью метода микролинзирования 10 одиночных юпитероподобных экзопланет. Правда, две из них могут быть высокоорбитальными спутниками ближайших к ним звёзд.

В сентябре 2011 года было объявлено об открытии двух экзопланет KIC 10905746 b и KIC 6185331 b любителями астрономии в рамках проекта Planet Hunters, предназначенного для анализа данных собранных телескопом «Кеплер». При этом упоминалось о 10 кандидатах в планеты, но на тот момент только два из них с достаточной степенью уверенности определялись учёными как экзопланеты. Планеты были найдены добровольными участниками проекта среди данных, которые профессиональные астрономы по тем или иным причинам отсеяли и если бы не помощь добровольцев, то эти планеты вероятно остались бы неоткрытыми.

5 декабря 2011 года телескопом Кеплер была обнаружена первая сверхземля в обитаемой зоне — Kepler-22 b.

20 декабря 2011 года телескопом Кеплер у звезды Кеплер-20 были обнаружены первые экзопланеты размером с Землю и меньше — Kepler-20 e (радиусом 0,87 земного и массой от 0,39 до 1,67 масс Земли) и Kepler-20 f (0,045 массы Юпитера и 1,03 радиуса Земли).

Экзопланеты

Авторское представление о транзите планеты GJ 1214b перед своей звездой

красного карлика.

И что же дальше?

На сегодняшний день среди открытых экзопланет есть те, поверхность которых представляет океан. Найдены газовые гиганты, теряющие свои атмосферы, и хтонические планеты, которые газовую оболочку уже утратили. Обнаружены планеты, на небе которых можно увидеть сразу несколько солнц, и кратные планетные системы возле пульсаров. Есть планеты, обращающиеся вокруг своих звёзд на очень высоких орбитах, и те планеты, которые практически касаются поверхности своего светила. Среди орбит экзопланет встречаются как круговые, так и сильно вытянутые, и всё это — так непохоже на нашу Солнечную систему.

С ростом возможностей наблюдательной техники число планет будет неуклонно расти — в этом нет никаких сомнений. Как и нет сомнений в том, что новые планеты продолжат удивлять исследователей. 20 экзопланет уже признаны максимально похожими на Землю, впрочем, подтвердить такой их статус — дело ещё очень далёкого будущего. Однако всё человечество лелеет одну общую мечту — найти иной мир, который был бы столь же уютен, как наша родная планета. И, конечно же, посетить его когда-нибудь.

Немного истории

В небе тысячи звезд, но в реальности их намного больше! Наше Солнце тоже звезда. Одна из многих: наша планета не уникальна, как и вся Солнечная система.

Еще в XVI веке Джордано Бруно (которого инквизиция сожгла за его убеждения) говорил, что мы живем лишь в одном из миров, которых во Вселенной великое множество.

Джордано Бруно умер в 1600 году — через четыре века, в 1992 году, ученые обнаружили первую планету вне Солнечной системы и подтвердили его слова.

Экзопланеты

Памятник Джордано Бруно в Риме

Искать экзопланеты сложно: в отличие от звезд, они не излучают, а только отражают свет. Поэтому они очень тусклые — то, что планеты должны существовать очень близко к звездам, лишь усугубляет ситуацию.

Представьте, что вы пытаетесь рассмотреть светлячка рядом с мощным прожектором, который светит вам прямо в лицо. Сложно!

Методология

Индекс подобия Земле

Индекс подобия Земле — параметр, показывающий насколько близко экзопланета соответствует Земле. Индекс может принимать значения в диапазоне от 0 до 1, где «1» означает идентичность Земле. Значения между «0,8» и «1,0» соответствуют каменистым землеподобным планетам, которые могут иметь подобную Земле атмосферу с умеренной температурой и поддерживать земные формы жизни. Индекс является функцией от радиуса планеты, её плотности, второй космической скорости и температуры поверхности.

Основной уровень жизнепригодности

Основной уровень жизнепригодности — параметр, определяющий водно-тепловую пригодность климата планеты для существования наземных продуцентов (растительности). Параметр принимает значение в диапазоне от 0 до 1, где «1» — наиболее пригодные для жизни условия и является функцией от температуры поверхности и относительной влажности. Значение «1» присваивается планетам со средней приповерхностной температурой 25 °C, являющейся наиболее оптимальной для большинства видов растений; «0» — планетам с температурой выше 50 °C и ниже 0 °C. Для экзопланет используется только температурная составляющая и предполагается, что на планете присутствует вода.

Удалённость от обитаемой зоны

Удалённость от обитаемой зоны — параметр, определяющий удалённость планеты от центра обитаемой зоны родительской звезды. Планеты в обитаемой зоне имеют значения от −1 до +1, где «0» обозначает центр обитаемой зоны, а −1 и +1 — её внутренний и внешний края. Удалённость от обитаемой зоны является функцией от светимости звезды, её температуры, а также расстояния до планеты.

Состав обитаемой зоны

Состав обитаемой зоны — параметр, определяющий валовый состав экзопланеты. Значения близкое к 0 обозначают тела, состоящие из смеси железа, камня и воды. Значения ниже −1 обозначают тела, состоящие преимущественно из железа, а значения выше +1 обозначают тела, состоящие преимущественно из газа. HZC зависит от массы и радиуса.

Атмосфера обитаемой зоны

Атмосфера обитаемой зоны — параметр, характеризующий возможность экзопланеты держать атмосферу. Значения ниже −1 обозначают тела со слабой атмосферой или без неё. Значения выше +1 обозначают тела, с плотной водородной атмосферой (газовые гиганты, например). Значения между −1 и +1 вероятно имеют атмосферу, подходящую для жизни, но 0 не обязательно обозначает идеальные условия. HZA зависит от массы, радиуса, орбиты вращения планеты и светимости звезды.

Планетный класс

Планетный класс — параметр, характеризующий планетные тела в виде комбинации из трёх температурных классов и семи категорий масс. Температурный класс зависит от положения планеты относительно обитаемой зоны и может быть трёх видов: горячий, тёплый и холодный (тёплый соответствует обитаемой зоне). Категория масс подразделяется на следующие типы: астероид, меркурий, миниземля, земля, суперземля, нептун и юпитер. Классификация может применяться для экзопланет (включая спутники), а также любых планет Солнечной системы.

Класс жизнепригодности

Класс жизнепригодности — параметр, являющийся классификацией только жизнепригодных миров (землеподобных планет в обитаемой зоне) и состоящий из пяти температурных категорий:

  • гипопсихропланеты (класс hP, очень холодные планеты) — температура от −50 °C и ниже;
  • психропланеты (класс Р, холодные планеты) — температура от −50 до 0 °C;
  • мезопланеты (класс М, планеты с умеренной температурой, не следует путать с термином «мезопланета» Айзека Азимова) — температура от 0 до 50 °C;
  • термопланеты (класс Т, горячие планеты) — температура от 50 до 100 °C;
  • гипертермопланеты (класс hT, очень горячие планеты) — температура от 100  °C и выше.

Такой способ наименования был позаимствован из микробиологии, где он используется для классификации микроорганизмов в зависимости от температуры, благоприятствующей для их роста. Класс М включает планеты с температурой поверхности от 0 до 50 °C, пригодной для поддержания сложных форм жизни (любителям научной фантастики он может быть знаком по сериалу «Звёздный путь»). Прочие классы подразумевают условия, подходящие только для экстремофилов.

Универсальный класс NH применяется для обозначения непригодных для жизни планет.

Температура

Tп — средняя приповерхностная температура атмосферы в кельвинах (К). Расчёт основан на предположении, что планета имеет атмосферу, подобную земной с парниковым эффектом за счет наличия 1 % СО2 и при альбедо 0,3.

Как искать экзопланеты

Увидеть экзопланету в телескоп практически невозможно (впервые у нас получилось это в 2004 году), поэтому искать их приходится по косвенным признакам.

Астрометрия

Вы часто слышите, что планеты вращаются вокруг звезд. На самом деле, звезды и планеты вращаются вокруг общего центра масс — барицентра. Даже если звезда гораздо массивнее своего спутника, то барицентр всей системы будет смещен относительно центра .

Экзопланеты

Так, наблюдая движение звезд по ночному небу, мы можем отслеживать небольшие периодические колебания из стороны в сторону. Их наличие указывает, что вокруг звезды вращается экзопланета: по амплитуде колебаний можно определить, насколько планета массивна.

Допплеровский метод

Еще один метод — наблюдение за спектром света звезды. Как и в случае с астрометрией, этот метод обусловлен движением самой звезды вокруг центра масс всей планетарной системы.

По мере вращения вокруг барицентра звезда то отдаляется, то приближается к нам. В силу вступает эффект Допплера: когда звезда от нас отдаляется, ее спектр смещается в красную сторону, а когда приближается — в синюю.

Экзопланеты

Звезда движется к нам, спектр синеет; движется от нас — краснеет

Анализируя спектр свечения звезд, ученые выявляют периодические «покраснения» и «посинения», которые указывают на наличие в системе планет. Зная массу звезды и интенсивность смещений, можно делать выводы о массе самой экзопланеты.

Гравитационное микролинзирование

Гравитационное линзирование — эффект, который возникает при искривлении пути луча света из-за гравитации массивного тела, в результате чего свет преломляется и фокусируется. Отсюда название «линзирование».

Подробнее об этом эффекте я писал в статье о темной материи — но там речь шла о преломлении света сверхмассивными объектами (галактиками и скоплениями галактик).

При поиске экзопланет речь идет о намного меньшей массе — соответственно, и о более слабом эффекте.

Экзопланеты

Для использования метода микролинзирования все должно выстроиться в одну линию:

  • далекий источник света,
  • звезда (вокруг которой вращается искомая экзопланета),
  • наблюдатель (астроном, который смотрит в телескоп).

Благодаря микроискажениям изображения от далекой звезды ученые смогут сделать выводы о существовании планет вокруг звезды-линзы.

Транзитный метод

Транзитный метод — самый эффективный на данный момент. Именно с его помощью найдено подавляющее большинство подтвержденных экзопланет.

Метод заключается в наблюдении за вариациями яркости звезд.

Если плоскость вращения планеты вокруг своей звезды пересекает линию наблюдения, то в какой-то момент (с нашей точки зрения) планета будет проходить по диску своей звезды. В этот момент она отбросит тень на звезду и заблокирует часть света, который долетает до нас — это событие называется транзитом.

Экзопланеты

Падение наблюдаемой яркости звезды при транзите планеты

Для астрономов транзит выглядит как периодическое падение в яркости звезды. По времени транзита и его интенсивности (количеству блокируемого света) можно делать выводы о наличии планеты, а также о ее радиусе и орбитальном периоде.

Если использовать допплеровский метод, который сообщает информацию о массе экзопланеты, мы можем заодно узнать плотность планеты и радиус ее орбиты.

Телескоп «Кеплер» — самый известный инструмент, который использует транзитный метод. С его помощью найдены 2326 подтвержденных экзопланет (около 70% от всех обнаруженных объектов).

Бум на данные экзопланет

Первые открытые экзопланеты представляли собою газовых гигантов (как Юпитер). Тогда ученые использовали методику лучевых скоростей. Она вычисляла уровень «раскачивания» звезды. Этот эффект создавался, если рядом с ней были планеты. Крупные экземпляры имеют большую массивность, а потому их присутствие обнаружить проще.

Перед тем как вступить в активное исследование экзопланет, земные инструменты умели измерять движение звезд до км/с. Это слишком слабо, чтобы уловить колебание, вызванное планетой. Сейчас существует более тысячи найденных миров, обнаруженных космическим телескопом Кеплер. Оказался на орбите в 2009 году и охотился 4 года. Он вышел на новую методику – «транзит». То есть, измеряет уровень уменьшения яркости звезды в момент, когда перед ней появляется планета и затеняет. Ниже показана схема, где сопоставляются методы поиска и количество открытых экзопланет.

Количество экзопланет, открытых разными способами

Экзопланеты

Кеплер показал, что существует множество различных объектов и предоставил богатый список экзопланет. Были не только подобные Юпитеру, но и миры земного типа. Отсюда появилось новое направление поиска – «суперземли» (по размеру колеблются от Земли к Нептуну).

В 2014 году появилась еще одна техника – «тест на множественность», способный ускорять процесс подтверждения кандидатуры в экзопланету. Базируется на орбитальной устойчивости. Большинство звездных транзитов связаны с наличием на орбите малых планет. Но многократно затмевающие звезды могли имитировать этот эффект и выгонять друг друга гравитацией из системы.

Что такое метод лучевых скоростей?

Представьте, что вы смотрите на машину, которая уезжает от вас. Расстояние между вами всё время увеличивается, значит, её лучевая скорость относительно вас — положительна. Если машина едет к вам и расстояние между вами уменьшается, лучевая скорость — отрицательна. В том случае, если машина кружит вокруг вас, не приближаясь и не удаляясь, её лучевая скорость равна нулю. Более формальное определение лучевой (радиальной) скорости можно найти здесь.

А теперь послушайте, что происходит с гудком машины, когда она приближается к вам и удаляется от вас:

https://youtube.com/watch?v=p-hBCcmCUPg

Эффект Доплера при движении автомобиля

Сначала, когда скорость машины мала, мы слышим «настоящий» звук гудка. По мере нарастания скорости автомобиля звук издаваемого сигнала постепенно повышается. При этом, как только машина начинает удаляться от нас, мы слышим понижение частоты гудка. Этот эффект изменения частоты сигнала в зависимости от лучевой скорости называется эффектом Доплера.

Да-да, это тот самый «полосатый» эффект, ведь он применим к любым волнам, не только к звуку, но и к видимому свету. Например, если жёлтый фонарик быстро летит на вас, он будет казаться зелёным, если от вас — то красным.

Каким же образом эффект Доплера применим к экзопланетным системам? Рассмотрим два тела — звезду и планету. На первый взгляд может показаться, что планета обращается вокруг звезды, а звезда стоит на месте. Но на самом деле звезда тоже обращается, с тем же периодом, что и планета, описывая при этом маленький кружок вокруг центра масс системы. И если при этом система располагается по отношению к вам так, что лучевая скорость звезды для вас в некоторые моменты времени отлична от нуля, вы можете заметить эффект Доплера в такой системе и заподозрить, что вокруг звезды обращается массивное тело. Например, лучевая скорость звезды Гамма Цефея А колеблется от –27,5 м/c до +27,5 м/c из-за обращающейся вокруг неё экзопланеты.

Таким образом, когда исследователи заявляют об открытии звезды методом лучевых скоростей, они не «видят» экзопланету, что называется, своими глазами, но измеряют её влияние на звезду. Причём модуль лучевой скорости звезды будет тем больше, чем:

  • массивнее планета;
  • легче звезда;
  • меньше расстояние между звездой и планетой;
  • меньше наклон плоскости орбиты системы к нашему лучу зрения. 

Аналогичная ситуация возникает и тогда, когда планеты открывают самым эффективным методом на сегодняшний день — транзитным.

Информационный взрыв «Кеплера»

На сегодняшний день насчитывается более 1000 подтвержденных экзопланет, обнаруженных одним спутником. Космический телескоп «Кеплер» был выведен на орбиту в 2009 году и охотился за обитаемыми планетами в течение четырех лет. В нем использовался метод, называемый «транзитным» – измерялось затемнение звезды во время прохождения перед ней космического объекта.

«Кеплер» выявил изобилие различных типов планет. Помимо газовых гигантов и тел земной группы, телескоп помог установить существование нового класса «суперземель», размеры которых находятся в пределах размеров Земли и Нептуна. Некоторые из них расположены в обитаемых зонах своих звезд, но астробиологи еще проверяют расчеты, чтобы выяснить, как в таких мирах может развиваться жизнь.

В 2014 году астрономы «Кеплера» представили метод «проверки многочисленностью», который должен был увеличить скорость перевода планет-кандидатов в статус подтвержденных. Методика основана на орбитальной устойчивости – многие звезды затемнялись через короткие промежутки времени, что могло быть вызвано только планетами на малых орбитах, так как будь это звезды, они бы гравитационно вытолкнули друг друга из системы в течение нескольких миллионов лет.

Экзопланеты