Техпроцесс и его значение, а также про zen, polaris и pascal

Какие бывают техпроцессы?

Ранние техпроцессы, до стандартизации NTRS (National Technology Roadmap for Semiconductors) и ITRS, обозначались «ХХ мкм» (мкм — микрометр), где ХХ обозначало техническое разрешение литографического оборудования. В 1970-х существовало несколько техпроцессов, в частности 10, 8, 6, 4, 3, 2 мкм. В среднем, каждые три года происходило уменьшение шага с коэффициентом 0,7.

За сорок лет развития технологий разрешение оборудования достигло значений в десятках нанометров: 32 нм, 28 нм, 22 нм, 20 нм, 16 нм, 14 нм. Если говорить про iPhone, то в пока ещё актуальном iPhone 8 используется процессор А11 Bionic, изготовленный по 10-нанометровому техпроцессу. Серийный выпуск продукции по нему начался в 2016 году тайваньской компанией TSMC, которая изготавливает процессоры и для iPhone 11.

Техпроцесс и его значение, а также про zen, polaris и pascal

TSMC — тайваньская компания по производству микроэлектроники, поставляющая Apple процессоры

16 апреля 2019 года компания TSMC анонсировала освоение 6-нанометрового технологического процесса, что позволяет повысить плотность упаковки элементов микросхем на 18%. Данный техпроцесс является более дешевой альтернативой 5-нанометровому техпроцессу, также позволяет легко масштабировать изделия, разработанные для 7 нм.

В первой половине 2019 года всё та же компания TSMC начала опытное производство чипов по 5-нм техпроцессу. Переход на эту технологию позволяет повысить плотность упаковки электронных компонентов по сравнению с 7-нанометровым техпроцессом на 80% и повысить быстродействие на 15%. Ожидается, что IPhone 2020 года получит процессор, созданный по новому техпроцессу, а не на втором поколении 7-нанометрового техпроцесса.

В начале 2018 года исследовательский центр imec в Бельгии и компания Cadence Design Systems создали технологию и выпустили первые пробные образцы микропроцессоров по технологии 3 нм. Судя по обычным темпах внедрения новых техпроцессов в серийное производство, ждать процессоров, изготовленных по 3-нанометровому техпроцессу, стоит не раньше 2023 года. Хотя Samsung уже к 2021 году намерена начать производство 3-нанометровой продукции с использованием технологии GAAFET, разработанной компанией IBM.

«Костюм кролика».

Такое название получил комбинезон белого цвета, который обязаны носить все рабочие производственных помещений. Делается это для поддержания максимальной чистоты и защиты от случайного попадания частиц пыли на производственные установки. «Костюм кролика» впервые был использован на фабриках по производству процессоров в 1973 году и с тех пор стал общепринятым стандартом.

20 слоев

Процессорный кристалл очень тонкий (меньше миллиметра), но в нем умещаются более 20 слоев сложнейших структурных объединений транзисторов, которые выглядят как многоуровневые хайвеи.

2500

Именно столько кристаллов процессора Intel Atom (имеют наименьшую площадь среди cовременных CPU) размещаются на одной 300-миллиметровой пластине.

10 000 000 000 000 000 000

Сто квинтиллионов транзисторов в виде структурных элементов микрочипов отгружаются с фабрик каждый год. Это приблизительно в 100 раз больше, чем оценочное количество муравьев на планете.

A

Стоимость производства одного транзистора в процессоре сегодня равна цене печати одной буквы в газете.

В процессе подготовки статьи использовались материалы с официального веб-сайта корпорации Intel, www.intel.ua

Важен ли техпроцесс при выборе телефона

С каждым годом техпроцесс становится все меньше и меньше. Сейчас это 7 нанометров, в ближайшие месяцы мы увидим процессоры с 5 нанометрами, но не за горами и 4 нанометра. Samsung и вовсе, по слухам, собирается готовить сразу 3 нанометра.

Преимущество меньших значений, за которым так гонятся производители, вкладывая в это миллиарды долларов, достаточно очевидно. Чем меньше техпроцесс, тем более производительным и экономичным будет процессор. Из-за меньшего расстояния между транзисторами, данные между ними передаются быстрее, а энергии на это затрачивается меньше. Это и есть основные преимущества.

Техпроцесс и его значение, а также про zen, polaris и pascal

Не все компании могут угнаться за прогрессом. Intel, например, пока так и не смогла нормально наладить выпуск 7-нм процессоров.

Даже при одинаковой архитектуре, но при уменьшении техпроцесса мы получаем повышение производительности, увеличение количества ядер, снижение себестоимости производства, выделение большего места для памяти и других компонентов, так как кристалл в целом становится более компактным. Есть и другие более специфические преимущества, на которых мы сейчас не будем подробно останавливаться.

Текущий период разработки

Плавно подбираемся к современным разработкам и начнем со все еще актуального процесса 32 нм – эпоха Intel Sandy Bridge и AMD Bulldozer.

Синему лагерю удалось создать кристалл с частотой до 3,5 ГГц, на который можно поместить до 4 ядер и графический чип частотой до 1,35 ГГц. Также в чип встроили северный мост, PCI‑E контроллер версии 2.0, поддержку памяти DDR3. Все ядра получили по 256 КБ кэша L2 и до 8 МБ L3. И все это размещалось на подложке 216 мм2

Красные же умудрились разместить на подложке до 16 процессорных ядер частотой до 4 ГГц с поддержкой передовых на 2011 год инструкций x86, ввести поддержку Hyper Transport и оснастить чипы поддержкой DDR3.

Переход на 22 нм осуществил только Intel, добавив своим продуктам Ivy Bridge и Haswell вроде Core i5, i7 и Xeon более высокую производительность при сниженном энергопотреблении. Архитектура не претерпела значительных изменений.Техпроцесс и его значение, а также про zen, polaris и pascalЛитография 14 нм подарила миру в 2017 году новый виток противостояния между AMD Ryzen и Intel Coffee Lake. В первом случае имеем совершенно новую архитектуру и признание во всем мире после многолетнего застоя. Во втором же – увеличение ядер на подложке в десктопном сегменте.

Дополнительно можно отметить снижение энергопотребления, добавление новых инструкций, снижение размера кремниевой пластины и повышение мощности в станах двух лагерей.Теперь ждем выход чипов, построенных по нормам 10 нм, который на данный момент доступен лишь в мобильном сегменте (Quallcomm Snapdragon 835/845, Apple A11 Bionic).

Техпроцесс 5нм в 2020 году

Окунувшись в историю, можно вспомнить, что более тонкий техпроцесс всегда давался микроэлектронному производству с большим трудом. На каждый шаг по уменьшению размеров транзисторов тратились колоссальные суммы денег и годы разработки:

  • 90 нм — 2002 год
  • 65 нм — 2004 год
  • 45 нм — 2006 год
  • 28 нм — 2010 год
  • 20 нм — 2012 год
  • 14 нм — 2014 год
  • 10 нм — 2017 год
  • 7 нм — 2018 год
  • 6 нм — 2019 год
  • 5 нм — 2020 год

Причём ранее ведущим новатором в мире была компания Intel, а теперь, с приоритетом мобильных вычислений, первенство ушло TSMC. Intel только-только начала переходить на 10нм техпроцесс, причём не очень удачно, а TSMC уже готовится к промышленному производству 5нм и проектирует фабрики под 3нм!

Техпроцесс и его значение, а также про zen, polaris и pascal

Что интересно, 10 нм — это не размер всего транзистора, это лишь показатель ширины затвора. Полностью транзистор, выполненный по проектным нормам 10 нм, имеет размер около 64нм и если посчитать площадь одного транзистора (чуть больше 4000 квадратных нанометров) и отнести её к площади чипа (например, Apple A10 — 89.25 мм2), то получится, что на площади этого чипа можно разместить почти 22 миллиарда транзисторов. Однако, нам известно, что в состав Apple A11 входит 4,3 миллиарда транзисторов. Остальная площадь чипа отводится под соединения и другие подсистемы чипа. Итого полезная площадь — это едва ли 20% от общей площади чипа.

Apple A12, получивший новый 7нм техпроцесс, имеет площадь 83,27 мм2, но при этом содержит уже 6,9 млрд. транзисторов. Если также посчитать полезную площадь, то получим значение 17%.

Это говорит о том, что площадь, которую занимают реальные вычислительные элементы, со временем сокращается, освобождая место под всевозможные соединения и переходы. Однако это не снижает производительность, так как сокращение размеров транзисторов столь сильное, что их количество всё равно возрастает на десятки процентов. Например, разница между эппловскими чипами А10 и А11 — 30%, а между новыми поколениями A11 и A12 — уже более 60%.

Техпроцесс и его значение, а также про zen, polaris и pascal

Дальнейшее уменьшение проектных норм, несомненно, приведёт к ещё большему числу транзисторов на прежней площади чипа. Можно примерно посчитать их количество и ожидаемый прирост производительности:

Что такое техпроцесс в процессоре: важность размер кристалла

Доброго времени суток.

Давайте вместе приоткроем завесу такого сложного дела как производство CPU для компьютеров. В частности, из этой статьи вы узнаете, что такое техпроцесс в процессоре и почему с каждым годом разработчики стараются его уменьшить.

Как изготавливаются процессоры?

Для начала вам стоит знать ответ на данный вопрос, чтобы дальнейшие разъяснения были понятны. Любая электронная техника, в том числе и CPU, создается на основе одного из наиболее часто используемых минералов — кристаллов кремния. Причем применяется он в данных целях уже более 50 лет.

Кристаллы обрабатываются посредством литографии для возможности создания отдельных транзисторов. Последние являются основополагающими элементами чипа, так как он полностью состоит из них.

Техпроцесс и его значение, а также про zen, polaris и pascal

Функция транзисторов заключается в блокировке или пропуске тока, в зависимости от актуального состояния электрического поля. Таким образом, логические схемы работают по двоичной системе, то есть в двух положениях — включения и выключения. Это значит, что они либо пропускают энергию (логическая единица), либо выступают в роли изоляторов (ноль). При переключении транзисторов в CPU производятся вычисления.

Теперь о главном

Если говорить обобщенно, то под технологическим процессом понимается размер транзисторов.

Что это значит? Снова вернемся к производству процессоров.

Чаще всего применяется метод фотолитографии: кристалл покрыт диэлектрической пленкой, и из него вытравливаются транзисторы с помощью света. Для этого используется оптическое оборудование, разрешающая способность которого, по сути, и является техническим процессом. От ее значения — от точности и чувствительности аппарата — зависит тонкость транзисторов на кристалле.

Техпроцесс и его значение, а также про zen, polaris и pascal

Что это дает?

Как вы понимаете, чем они будут меньше, тем больше их можно расположить на чипе. Это влияет на:

  • Тепловыделение и энергопотребление. Из-за уменьшения размера элемента он нуждается в меньшем количестве энергии, следовательно, и меньше выделяет тепла. Данное преимущество позволяет устанавливать мощные CPU в небольшие мобильные устройства. Кстати, благодаря низкому энергопотреблению современных чипов, планшеты и смартфоны дольше держат заряд. Что касается ПК, пониженное тепловыделение дает возможность упростить систему охлаждения.
  • Численность заготовок. С одной стороны, производителям выгодно уменьшать техпроцесс, потому что из одной заготовки получается большее количество продукции. Правда, это лишь следствие утончения техпроцесса, а не преследование выгоды, потому что с другой стороны, чтобы снизить размер транзисторов, необходимо более дорогое оборудование.

Техпроцесс и его значение, а также про zen, polaris и pascal

Техпроцесс в числах и примерах

Измеряется технологический процесс в нанометрах (нм). Это 10 в -9 степени метра, то есть один нанометр является миллиардной его частью. В среднем, современные процессоры производятся по техпроцессу 22 нм.

Можете себе представить, сколько транзисторов умещается на процессоре. Чтобы вам было понятнее, на площади среза человеческого волоса могут разместиться 2000 элементов. Хоть чип и миниатюрный, но явно больше волоска, поэтому может включать в себя миллиарды транзисторных затворов.

Хотите знать точнее? Приведу несколько примеров:

В процессорах фирмы AMD, а именно Trinity, Llano, Bulldozer, техпроцесс составляет 32 нм. В частности, площадь кристалла последнего — 315 мм2, где располагаются 1,2 млрд. транзисторов. Phenom и Athlon того же производителя выполнены по техпроцессу 45 нм, то есть имеют 904 млн. при площади основания 346 мм2.

Техпроцесс и его значение, а также про zen, polaris и pascalТехпроцесс и его значение, а также про zen, polaris и pascal

К слову, все, что вы узнали о техпроцессах для центральных компьютерных аппаратов, применимо и к графическим устройствам. Например, данное значение в видеокартах AMD (ATI) и Nvidia составляет 28 нм.

Техпроцесс и его значение, а также про zen, polaris и pascal

Теперь вы знаете больше о таком важном компоненте вашего компьютера как процессор. Возвращайтесь за новой информацией

До скорого.

Формирование слоев

Для создания крошечных медных проводов, которые в конечном счете будут передавать электричество к/от различных соединителей, добавляются дополнительные фоторезисты (светочувствительные материалы), которые также промываются и экспонируются. В дальнейшем выполняется процесс ионного легирования для добавления примесей и защиты мест осаждения ионов меди от медного купороса во время процесса гальваностегии.

На различных этапах этих процессов производства процессора добавляются дополнительные материалы, которые протравливаются и полируются. Данный процесс повторяется 6 раз для формирования 6 слоев.

Конечный продукт выглядит как сетка из множества микроскопических медных полос, проводящих электричество. Некоторые из них соединены с другими, а некоторые – расположены на определенном расстоянии от других. Но все они используются для реализации одной цели – для передачи электронов. Другими словами, они предназначены для обеспечения так называемой «полезной работы» (например, сложение двух чисел с максимально возможной скоростью, что является сутью модели вычислений в наши дни).

Многоуровневая обработка повторяется на каждом отдельном небольшом участке поверхности подложки, на котором будут изготовлены чипы. В том числе к таким участкам относятся те из них, которые частично расположены за пределами подложки.

Какие этапы проходят процессоры во время производства

Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.

1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.

2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.

3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.

4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.

5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.

6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.

7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.

8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.

9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.

10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.

11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.

12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.

13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.

14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.

Строение головного мозга видео

< Предыдущая   Следующая >

Похожие материалы:

  • 04/01/2019 — Мобильные процессоры 2019 — большой обзор всех мобильных SoC, представленных на рынке в 2019 году
  • 15/08/2016 — Helio P20 и Helio X30 — новые мобильные процессоры от MediaTek, которые утрут нос Куалкому
  • 08/01/2015 — Мобильные процессоры 2015: «суперчип» NVIDIA Tegra X1 vs Snapdragon 810, самые крутые процессоры для смартфонов в 2015 году, будущее мобильных процессоров

Новые материалы по этой тематике:

  • 23/08/2017 — MediaTek — новые мобильные процессоры 2017-2018 года Helio P23 и Helio P30 — подробный обзор характеристик и устройств на них
  • 24/07/2017 — Qualcomm Snapdragon 660 (Снапдрагон 660) — обзор свежего среднеклассового процессора, характеристики чипа, не уступающего флагманским решениям
  • 05/07/2017 — Qualcomm Snapdragon 625 (MSM8953) — обзор, характеристики процессора, список смартфонов, результаты в Antutu и GeekBench, сравнение с Mediatek Helio X20
  • 30/06/2017 — Qualcomm Snapdragon 435 — обзор, основные характеристики процессора, список смартфонов, результаты в бенчмарках Antutu и GeekBench
  • 10/06/2017 — Мобильные процессоры Qualcomm 2017 года, что нам ждать в 2018 году
  • 09/05/2017 — Qualcomm Snapdragon 845 характеристики, дата выхода, сравнение с Snapdragon 835 и Apple A11, антуту, смартфоны на SD845
  • 02/04/2017 — Helio X30 — результаты бенчмарков Geekbench 4, GFX 3.0 T-Rex и сравнение с Helio X20 в производительности

Старые материалы по этой тематике:

  • 02/03/2017 — Процессор Exynos 8 Octa 8898M будет использоваться в Samsung Galaxy S8
  • 25/02/2017 — Samsung Exynos 9810 — обзор нового процессора, предназначенного для флагмана Galaxy S8 — характеристики чипсета
  • 15/02/2017 — Qualcomm выпустит процессоры Snapdragon 630, 635 и 660, которые выполнит по 14-нм техпроцессу — краткий обзор
  • 14/02/2017 — Процессор Snapdragon 835 обошел показатели чипа Apple A10 в GeekBench — краткий обзор производительности чипсета от Qualcomm
  • 11/02/2017 — Xiaomi Pinecone V670 и V970 — обзор новых фирменных процессоров Сяоми, характеристики, дата выхода и видео обзор
  • 01/12/2016 — Новые мобильные процессоры конца 2016 — начала 2017 года
  • 19/11/2016 — Qualcomm Snapdragon 835 обзор, сравнение, дата выхода, в каких смартфонах

Следующая страница >>

На что влияет техпроцесс

Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.

Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.

Развитие технологии производства процессоров

Гордон Мур, один из основателей компании Intel, одного из лидеров производства процессоров в мире, в 1965 году на основе своих наблюдений открыл закон, по которому новые модели процессоров и микросхем появлялись через равные отрезки времени. Рост количества транзисторов в процессорах растет примерно в 2 раза за 2 года. Вот уже в течение 40 лет закон Гордона Мура работает без искажений.
Освоение будущих технологий не за горами – уже есть рабочие прототипы на основе 32 нм и 22нм технологии производства процессоров.
До середины 2004 года мощность процессора зависела в первую очередь от частоты процессора, но, начиная с 2005 года, частота процессоров практически перестала расти. Появилась новая технология многоядерности процессора. То есть создается несколько ядер процессора с равной тактовой частотой, и при работе мощность ядер суммируется. За счет этого повышается общая мощность процессора.

Ниже вы можете посмотреть видео о производстве процессоров.

В преддверии выхода новых поколений процессов и видеокарт от AMD и NVIDIA стоит разобрать такую важную характеристику чипа, как технологический процесс его производства. Intel уже с 2015 года клепает процессоры на 14 нм техпроцессе, в то время, как AMD и NVIDA используют уже устаревший 28 нм техпроцесс. Из нашей статьи вы узнаете о том, что такое техпроцесс производства чипа
и его влияние на основные характеристики CPU/GPU
, а также узнаете ответ на вопрос: «Что лучше: купить сейчас или подождать нового поколения?»

Что такое «7 нм техпроцесс»?

Если говорить очень упрощённо, то процессор — это миллиарды крошечных транзисторов и электрических затворов, которые включаются и выключаются при выполнении операций. «7 нм» — это размер этих транзисторов в нанометрах. Для понимания масштабов стоит напомнить, что в одном миллиметре миллион нанометров, а человеческий волос толщиной 80000 — 110000 нанометров. Транзистором, напомню, называют радиоэлектронный компонент из полупроводника (материал, у которого удельная проводимость меняется от воздействия температуры, различных излучений и прочего), который от небольшого входного сигнала управляет значительным током в выходной цепи. Он используется для усиления, генерирования, коммутации и преобразования электрических сигналов. Сейчас транзистор является основой схемотехники подавляющего большинства электронных компонентов и интегральных микросхем. Размер транзистора полезно знать специалистам для оценки производительности конкретного процессора, ведь чем меньше транзистор, тем меньше требуется энергии для его работы.

Техпроцесс и его значение, а также про zen, polaris и pascal

Процессор A7, стоявший в iPhone 5S, производился по 28-нанометровому техпроцессу

При производстве полупроводниковых интегральных микросхем применяется фотолитография (нанесение материала на поверхности микросхемы при участии света) и литография (нанесение материала с помощью потока электронов, излучаемого катодом вакуумной трубки). Разрешающая способность в микрометрах и нанометрах оборудования для изготовления интегральных микросхем (так называемые «проектные нормы») и определяет размер транзистора, а с ним и название применяемого конкретного технологического процесса.

Шаг 9. Заключение в корпуса

Все рабочие пластины помещаются в физические корпуса. Несмотря на то, что пластины были предварительно протестированы и в отношении их было принято решение, что они работают корректно, это не означает, что они являются хорошими процессорами.

Процесс заключения в корпуса означает помещение кремниевого кристалла в материал подложки, к контактам или массиву шариковых выводов которого подсоединены миниатюрные золотые проводки. Массив шариковых выводов можно обнаружить на обратной стороне корпуса. В верхней части корпуса устанавливается теплоотвод. Он представляет собой металлический корпус. По завершении этого процесса центральный процессор выглядит как готовый продукт, предназначенный для потребления.

Примечание: металлический теплоотвод является ключевым компонентом современных высокоскоростных полупроводниковых устройств. Раньше теплоотводы были керамическими и не использовали принудительное охлаждение. Оно потребовалось для некоторых моделей 8086 и 80286 и для моделей, начиная с 80386. Предшествующие поколения процессоров имели намного меньше транзисторов.

Например, процессор 8086 имел 29 тысяч транзисторов, в то время как современные центральные процессоры имеют сотни миллионов транзисторов. Столь маленькое по нынешним меркам количество транзисторов не вырабатывало достаточно тепла, чтобы требовалось активное охлаждение. Чтобы отделить данные процессоры от нуждающихся в таком типе охлаждения, впоследствии на керамические чипы ставилось клеймо «Требуется теплоотвод».

Современные процессоры генерируют достаточно тепла, чтобы расплавиться в считанные секунды. Только наличие теплоотвода, подсоединенного к большому радиатору и вентилятору, позволяет им функционировать в течение продолжительного времени.

Техпроцесс и его значение, а также про zen, polaris и pascal