Правильный многоугольник

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник – это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х : cosα, где х – медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х : cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х : cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c : 2=√(х : cosα)^2 — (х^2) = √x^2 (1 — cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Свойства

Координаты

Пусть xC{\displaystyle x_{C}} и yC{\displaystyle y_{C}} — координаты центра, а R{\displaystyle R} — радиус описанной вокруг правильного многоугольника окружности, ϕ{\displaystyle {\phi }_{0}} — угловая координата первой вершины, тогда декартовы координаты вершин правильного n-угольника определяются формулами:

xi=xC+Rcos⁡(ϕ+2πin){\displaystyle x_{i}=x_{C}+R\cos \left({\phi }_{0}+{\frac {2\pi i}{n}}\right)}
yi=yC+Rsin⁡(ϕ+2πin){\displaystyle y_{i}=y_{C}+R\sin \left({\phi }_{0}+{\frac {2\pi i}{n}}\right)}

где i=…n−1{\displaystyle i=0\dots n-1}

Размеры

Правильный многоугольник
Правильный многоугольник, вписанный и описанный около окружности

Пусть R{\displaystyle R} — радиус описанной вокруг правильного многоугольника окружности, тогда радиус вписанной окружности равен

r=Rcos⁡πn{\displaystyle r=R\cos {\frac {\pi }{n}}},

а длина стороны многоугольника равна

a=2Rsin⁡πn=2rtgπn{\displaystyle a=2R\sin {\frac {\pi }{n}}=2r\mathop {\mathrm {tg} } \,{\frac {\pi }{n}}}

Площадь

Площадь правильного многоугольника с числом сторон n{\displaystyle n} и длиной стороны a{\displaystyle a} составляет:

S=n4 a2ctg⁡πn{\displaystyle S={\frac {n}{4}}\ a^{2}\mathop {\mathrm {} } \,\operatorname {ctg} {\frac {\pi }{n}}}.

Площадь правильного многоугольника с числом сторон n{\displaystyle n}, вписанного в окружность радиуса R{\displaystyle R}, составляет:

S=n2R2sin⁡2πn{\displaystyle S={\frac {n}{2}}R^{2}\sin {\frac {2\pi }{n}}}.

Площадь правильного многоугольника с числом сторон n{\displaystyle n}, описанного вокруг окружности радиуса r{\displaystyle r}, составляет:

S=nr2tgπn{\displaystyle S=nr^{2}\mathop {\mathrm {tg} } \,{\frac {\pi }{n}}}(площадь основания n-угольной правильной призмы)

Площадь правильного многоугольника с числом сторон n{\displaystyle n} равна

S=nra2{\displaystyle S={\frac {nra}{2}}},

где r{\displaystyle r} — расстояние от середины стороны до центра, a{\displaystyle a} — длина стороны.

Площадь правильного многоугольника через периметр (P{\displaystyle P}) и радиус вписанной окружности (r{\displaystyle r}) составляет:

S=12Pr{\displaystyle S={\frac {1}{2}}Pr}.

Периметр

Если нужно вычислить длину стороны an{\displaystyle a_{n}} правильного n-угольника, вписанного в окружность, зная длину окружности L{\displaystyle L} можно вычислить длину одной стороны многоугольника:

an{\displaystyle a_{n}} — длина стороны правильного n-угольника.
an=sin⁡180n⋅Lπ{\displaystyle a_{n}=\sin {\frac {180}{n}}\cdot {\frac {L}{\pi }}}

Периметр Pn{\displaystyle P_{n}} равен

Pn=an⋅n{\displaystyle P_{n}=a_{n}\cdot n}

где n{\displaystyle n} — число сторон многоугольника.

Теорема вписанной в правильный многоугольник окружности

Теорема 2

В любой правильный многоугольник можно вписать единственную окружность.

Доказательство.

Пусть нам дан правильный многоугольник $A_1A_2A_3\dots A_n$. Пусть точка $O$ — центр описанной вокруг данного многоугольника окружности (Рис. 3).

Рисунок 3. Вписанная в правильный многоугольник окружность

Так как углы $A_1\ и\ A_2$ равны и $A_1O\ и\ A_2O$ — биссектрисы, то угол $OA_1A_2$ равен углу $O{A_2A}_1$. Следовательно, треугольник $OA_1A_2$ равнобедренный, и, значит, $A_1O=A_2O$.

Так как $A_1A_2=A_2A_3$, $\angle O{A_2A}_1=\angle O{A_2A}_3$ и сторона $A_2O$ — общая, то треугольники $O{A_2A}_1$ и $O{A_2A}_3$ равны.

Аналогично доказывается равенство других треугольников. То есть, мы получим

Значит и высоты этих треугольников равны между собой

Тогда окружность с центром в точке $O$ и радиусом, равным ${OH}_1$ проходит через точки $H_1,\ H_2,\dots ,H_n$, то есть касается всех сторон данного многоугольника. Следовательно. Является вписанной для правильного многоугольника.

Единственность. Предположим противное. Пусть существует еще одна вписанная в этот многоугольник окружность. Обозначим её центр $O’$. Тогда $O’$ равноудалена от всех сторон многоугольника, а значит лежит в точке пересечения биссектрис его углов. Но тогда точка $O’$ совпадает с точкой $O$ и, следовательно, эти окружности также совпадают.

Теорема доказана.

Из этих двух теорем можно сформулировать следующие следствия:

Следствие 1: Вписанная в правильный многоугольник окружность касается его в серединах его сторон.

Следствие 2: Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в этот же правильный многоугольник. Этот центр называется центром правильного многоугольника.

Общие сведения

Основной линией, с помощью которой образовывается многоугольная фигура, называется ломанная. Это несколько последовательно соединённых между собой отрезков. Если при этом они друг друга не пересекают, кривую считают простой. В ином случае говорят про ломанную с самопересечением. Каждый отрезок, входящий в кривую, называют звеном. Точки, ограничивающие его — вершинами.

Правильный многоугольник

Нарисовать ломанную можно по-разному. Главное, соблюдать правило последовательного соединения точек отрезков. Если при этом получится рисунок, на котором первая вершина начального отрезка совпадёт с последней вершиной (ломанная замкнётся), такая кривая называется замкнутой. Но чаще используется другое название — многоугольник. Другими словами, это фигура, образованная соединёнными между собой прямыми, состоящая из отрезков без самопересечения.

Любого вида многоугольник состоит из следующих частей:

  • вершин;
  • сторон;
  • углов.

Две прямые линии, соединяющиеся у вершины, образуют угол. Он получается при пересечении лучей, проходящих по сторонам фигуры. Именно от количества углов, получаемых при построении, тот или иной геометрический объект может иметь своё уникальное название. Например, тело с тремя углами — треугольник, четырьмя — четырёхугольник, пятью — пятиугольник.

Правильный многоугольник

Понятия применимы не только к плоскости, но и к пространству. Так, во втором случае с помощью ломанной образовывается пространственный многоугольник. Его особенность в том, что вершины тела не лежат в одной плоскости и как минимум фигура должна иметь их по меньшей мере 4. Многоугольник с n вершинами называется n–угольником.

Каждая фигура со множеством углов имеет особые линии. Это такие отрезки, построение которых помогает охарактеризовать тело. Одной из них является диагональ. Это элемент, который получается при соединении отрезком двух несоседних вершин. Таких замкнутых прямых в многоугольнике может быть много. При этом из одной вершины можно строить несколько диагоналей.

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

Понятие многоугольника. Что такое многоугольник

Многоуго́льник — это геометрическая фигура, представляющая собой замкнутую ломаную линию.

Существуют три варианта определения многоугольников:

  • Многоугольник — это плоская замкнутая ломаная линия;
  • Многоугольник — это плоская замкнутая ломаная линия без самопересечений;
  • Многоугольник — это часть плоскости, которая ограничена замкнутой ломаной.

Вершины ломаной называются вершинами многоугольника, а отрезки — сторонами многоугольника.

Вершины многоугольника называются соседними, если они являются концами одной из его сторон.

Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, и находящийся во внутренней области многоугольника.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разность между 180° и внутренним углом

Многоугольник называют выпуклым, при условии, что одно из следующих условий является верным:

  • Выпуклый многоугольник лежит по одну сторону от любой прямой, соединяющей его соседние вершины;
  • Выпуклый многоугольник является пересечением нескольких полуплоскостей;
  • Любой отрезок с концами в точках, принадлежащих выпуклому многоугольнику, полностью ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и правильный пятиугольник.

Выпуклый многоугольник называется вписанным в окружность, если все его вершины лежат на одной окружности.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

Классификация (виды) многоугольников

Правильный многоугольник

Классификация многоугольников по видам может быть по многим свойствам, самые главные из них:

  • количество вершин
  • выпуклость
  • правильность
  • возможность вписать или описать окружность

треугольникчетырехугольникквадратлюбого треугольника всегда можно описать окружность

В природе

Дорога гигантов в Северной Ирландии

Многоугольники появляются в горных породах, чаще всего в виде плоских граней кристаллов , где углы между сторонами зависят от типа минерала, из которого сделан кристалл.

Правильные шестиугольники могут возникать, когда при охлаждении лавы образуются области плотно упакованных столбов базальта , которые можно увидеть на Дороге гигантов в Северной Ирландии или в Дьявольской столбе в Калифорнии .

В биологии поверхность восковых сот, созданных пчелами, представляет собой массив шестиугольников , а стороны и основание каждой соты также представляют собой многоугольники.

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

История

Построение правильного многоугольника с n сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m сторонами (при целом m > 1), имея уже построенный многоугольник с числом сторон 2m — 1: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Эвклид указывает и второй критерий: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с r · s сторонами. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники с 2m⋅p1k1⋅p2k2{\displaystyle 2^{m}\cdot {p_{1}}^{k_{1}}\cdot {p_{2}}^{k_{2}}} сторонами, где m — целое неотрицательное число, p1,p2{\displaystyle {p_{1}},{p_{2}}} — числа 3 и 5, а k1,k2{\displaystyle {k_{1}},{k_{2}}} принимают значения 0 или 1.

Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить при помощи циркуля и линейки. На сегодняшний день известны следующие простые числа Ферма: 3, 5, 17, 257, 65537. Вопрос о наличии или отсутствии других таких чисел остаётся открытым. Если брать в общем, из этого следует, что правильный многоугольник возможно построить, если число его сторон равно 2kp1k1p2k2⋯psks{\displaystyle 2^{k_{0}}{p_{1}}^{k_{1}}{p_{2}}^{k_{2}}\cdots {p_{s}}^{k_{s}}}, где k{\displaystyle {k_{0}}} — целое неотрицательное число, k1,k2,…,ks{\displaystyle {k_{1}},{k_{2}},\dots ,{k_{s}}} принимают значения 0 или 1, а pj{\displaystyle {p_{j}}} — простые числа Ферма.

Гаусс подозревал, что это условие является не только достаточным, но и необходимым, но впервые это было доказано Пьером-Лораном Ванцелем в 1836 году.

Точку в деле построения правильных многоугольников поставило нахождение построений 17-, 257- и 65537-угольника. Первое было найдено Йоханнесом Эрхингером в 1825 году, второе — Фридрихом Юлиусом Ришело в 1832 году, а последнее — Иоганном Густавом Гермесом в 1894 году.

С тех пор проблема считается полностью решённой.

Треугольный многоугольник

Такую фигуру называют треугольником. Она состоит из трёх углов и такого же числа сторон. Их, принято обозначать маленькими буквами a, b, c или подписывать двумя заглавными по названиям вершин, которые являются началом и концом отрезка. Например, треугольник ABC содержит стороны: AB = a, BC = b, AC = c.

В зависимости от особенностей, фигура может называться:

  • разносторонней — многоугольник, у которого все 3 стороны не равны;
  • равнобедренной — длины любых двух граней совпадают;
  • равносторонней (правильной) — все стороны фигуры одинаковые.

Но несмотря на классификацию, все перечисленные виды обладают общими свойствами. Считается, что угол любого плоского треугольника образуется при пересечении двух лучей, содержащих его стороны, то есть если говорят об ∠A, то подразумевают, что был лучи AB и АС, при построении которых он и образовался. Таким образом, он заключается не между сторонами, а лучами.

Эти 3 параметра определяют свойства треугольной фигуры. С их помощью можно находить, площадь, стороны, значения углов. Определение медианы звучит так: это прямая, проведённая из угла к противолежащей стороне таким образом, что разделяет её пополам. Под биссектрисой же понимают отрезок, разделяющий угол на 2 равные части. Высотой называют перпендикуляр, опущенный на противоположную сторону из вершины.

Треугольник, который выглядит, как прямой угол, называют прямоугольным. То есть построив в любом многоугольнике с тремя углами высоту, можно получить две фигуры, обе из которых точно будут прямоугольными. Боковые грани, перпендикулярные друг другу, называют катетами, а оставшуюся сторону — гипотенузой. По сути, тело представляет собой разделённый диагональю квадрат. Отсюда площадь многоугольника будет равняться произведению катетов, делённых на 2: S = a*b/2. А также следует отметить, что у равнобедренного треугольника медиана, высота и биссектриса совпадают.

Удвоение числа сторон правильного описанного многоугольника

Чтобы удвоить число сторон правильного описанного многоугольника нужно разделить дуги ab, bc, cd, … пополам и провести через точки деления отрезки mn, pg, rs, … до пересечения их со сторонами данного многоугольника (черт. 199).

В этом случае образуется многоугольник равноугольный, ибо его углы измеряются одинаковой мерой. В равноугольном же описанном многоугольнике стороны равны (теорема 120).

Периметр описанного многоугольника с удвоенным числом сторон уменьшается.

Действительно,

An > αn
Bp > βp, следовательно,
AB > αn + np + pβ

Такие же равенства имеют место и для сторон BC, CD, … и т. д. Сложив их, находим, что

AB + BC + CD + … > mn + np + pq + …
или Pn > P2n

где Pn и P2n означают периметры правильных описанных многоугольников, имеющих n и 2n сторон.

Правильный многоугольник

Теорема 125. Сторона правильного вписанного шестиугольника равна радиусу (a6 = r).

Дано. Пусть AB сторона правильного шестиугольника (черт. 200), вписанного в круг, радиус которого обозначим через r.

Требуется доказать, что AB = a6 = r.

Доказательство. Дуга AB равна 60°. Соединив A и B с центром O, имеем треугольник ABO, у которого угол AOB имеет 60° = (2/3)d.

Углы A и B равны, следовательно, из равенства A + B + O = 2d, имеем:

2A + (2/3)d = 2d, откуда A = B = (2/3)d

Таким образом треугольник ABO равносторонний и следовательно AB = AO = r.

Теорема 126. Сторона правильного вписанного треугольника равна радиусу, умноженному на 3 (a3 = r√3).

Дан правильный вписанный треугольник ABC (черт. 201).

Требуется доказать, что AB = r√3.

AE = EB = DE = EO и AB ⊥ DO.

Из треугольника AEO вытекает равенство

AE2 = AO2 — EO2

Так как AE = AB/2, EO = DO/2 = r/2, то это равенство дает

AB2/4 = r2 — r2/4 = (3/4)r2, откуда
AB = a3 = r√3 (ЧТД).

Правильный многоугольник

Теорема 127. Сторона вписанного квадрата равна радиусу, умноженному на √2.

Дан правильный вписанный четырехугольник или квадрат ABCD (черт. 202).

Требуется доказать, что AB = r√2.

Доказательство. Соединим B с D. Отрезок BD есть диаметр, ибо прямой угол B опирается на концы диаметра.

Из прямоугольного треугольника ABD вытекает равенство

AB2 + AD2 = BD2

Так как AB = AD, BD = 2r, то

2AB2 = 4r2, откуда AB = a4 = r√2 (ЧТД).

Теорема 128. Сторона правильного вписанного десятиугольника равна большей части радиуса, разделенного в крайнем и среднем отношении.

Дано. Положим AB есть сторона правильного вписанного десятиугольника (черт. 203), следовательно, дуга AB = 1/10 окружности и

∠AOB = (4d)/10 = (2/5)d.

Требуется доказать, что AB есть большая часть радиуса среднепропорциональная между целым радиусом и меньшей его частью.

Правильный многоугольник

Доказательство. Соединим точки A и B с центром и разделим угол BAO пополам.

∠AOB = (2/5)d

В равенстве ∠BAO + ∠ABO + ∠AOB = 2d

∠BAO = ∠ABO, следовательно, ∠BAO = ∠ABO = (4/5)d.

Так как ∠α = ∠β по построению, то из равенства

∠α + ∠β = (4/5)d следует, что ∠α = ∠β = (2/5)d

Треугольник ABC равнобедренный, ибо

∠α = (2/5)d, ∠B = (4/5)d,

следовательно, из равенства

∠α + ∠B + ∠ACB = 2d имеем:
(2/5)d + (4/5)d + ∠ACB = 2d и ∠ACB = (4/5)d.

Таким образом

∠ACB = ∠ABC = (4/5)d

следовательно,

AB = AC

Треугольник ACO тоже равнобедренный, ибо

∠β = (2/5)d и ∠AOB = (2/5)d

следовательно, AC = CO и таким образом AB = AC = CO.

Так как отрезок AC делит угол треугольника пополам, то имеет место пропорция (теорема 98)

AO/AB = OC/CB

Так как AB = OC и AO = OB, то

OB/OC = OC/CB

откуда видно, что OC равно большей части радиуса OB, разделенного в крайнем и среднем отношении. Так как OC = AB, то и сторона десятиугольника обладает тем же свойством.

Обозначив ее через a10, а радиус через r, имеем пропорцию

r/a10 = a10/(r — a10)

откуда положительное решение квадратного уравнения, определяющее сторону правильного вписанного десятиугольника, будет:

a10 = ((√5 — 1)/2)r.

Правильный пятиугольник в природе, технике и культуре:

Пентасимметрию можно наблюдать в некоторых фруктах (например, у мушмулы германской), у иглокожих (например, у морских звёзд) и у некоторых растений.

Исследования формирования водяного льда на ровной поверхности меди при температурах 100-140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.

Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.

Паркет, тротуарная плитка, мозайки и т.п. может выкладываться элементами, которые имеют вид пятиугольников.

Государственный знак качества СССР имеет форму пятиугольника с выпуклыми сторонами.

Примечание:  Фото https://www.pexels.com, https://pixabay.com

карта сайта

Коэффициент востребованности
881