Передаточное отношение

Назначение, конструктивные особенности

Основная задача этого элемента сводится к изменению крутящего момента перед подачей его на привод колес. То же делает и коробка передач, но у неё существует возможность изменения передаточных чисел за счет ввода в зацепление тех или иных шестерен. Несмотря на наличие в конструкции автомобиля КПП, на выходе из нее крутящий момент небольшой, а скорость вращения выходного вала – высокая. Если передать вращение напрямую на ведущие колеса, то возникшая нагрузка «задавит» двигатель. В общем, авто просто не сможет сдвинуться с места.

Главная передача автомобиля обеспечивает повышение крутящего момента и снижение скорости вращения. Но в отличие от КПП передаточное число у нее фиксированное.

Расположение главной передачи на примере обычной МКПП

Представляет собой эта передача на легковом авто обычный шестеренчатый одноступенчатый редуктор постоянного зацепления, состоящий из двух шестерен разного диаметра. Ведущая шестерня небольшая по размерам и связана она с выходным валом КПП, то есть вращение подается на нее. Ведомая же шестерня значительно больше по размерам и получаемое вращение она подает на приводные валы колес.

Передаточное число является соотношением количества зубьев шестерен редуктора. Для легковых авто этот параметр находится в диапазоне 3,5-4,5, а для грузовиков он достигает 5-7.

Чем больше передаточное число (больше количество зубьев ведомой шестерни относительно ведущей), тем выше крутящий момент, подаваемый на колеса. При этом тяговое усилие будет больше, но максимальная скорость ниже.

Передаточное число главное передачи подбирается исходя из эксплуатационных показателей силовой установки, а также других узлов трансмиссии.

Устройство главной передачи напрямую зависит от конструктивных особенностей самого автомобиля. Этот редуктор может быть, как отдельным узлом, установленным в своем картере (заднеприводные модели), так и входить в конструкцию КПП (авто с передним приводом).

Главная передача в заднеприводном автомобиле

Что касается некоторых полноприводных авто, то у них может использоваться разная компоновка. Если в таком автомобиле расположение силовой установки – поперечное, то главная передача передней оси входит в конструкцию КПП, а задней располагается в отдельном картере. У автомобиля с продольной компоновкой главные передачи на обоих осях отделены от КПП и раздаточной коробки.

В моделях с отделенной главной передачей, этот редуктор выполняет еще одну задачу – изменяет угол направления вращения на 90 град. То есть выходной вал КПП и приводные валы колес имеют перпендикулярное расположение.

Расположение главной передачи передней оси Audi

В переднеприводных моделях, где главная передача входит в конструкцию КПП, указанные валы имеют параллельное расположение, поскольку менять угол направления не нужно.

В ряде грузовых авто применяются двухступенчатые редукторы. Примечательно, что их конструкция может быть разной, но наибольшее распространение получила так называемая разнесенная компоновка, в которой используется один центральный редуктор и два колесных (бортовых). Такая конструкция позволяет существенно повысить крутящий момент, а соответственно и тяговое усилие на колесах.

Привод легковых автомобилей

Особенность работы редуктора сводится к тому, что он равномерно разделяет вращение на оба приводных вала. При прямолинейном движении такое условие является нормальным. Но при прохождении поворотов колеса одной оси проходят разное расстояние, поэтому необходимо изменение скорости вращения каждого из них. Это входит в задачу дифференциала, используемого в конструкции трансмиссии (он устанавливается на ведомой шестерне). В результате главная передача подает вращение на приводные валы не напрямую, а через дифференциал.

Замена главной передачи

Если вы недовольны динамикой вашего автомобиля, самый простой способ её исправить — замена главной передаточной пары. Это подразумевает установку нового дифференциала с другим внутренним передаточным числом. Меньшее число позволяет получить более длинную передачу, а большее число – короткий передаточный ряд. Это не позволит вам изменить плотность ступеней в коробке, но обеспечит смещение всего ряда в область тех значений, которые вам подходят.

В действительности, такие манипуляции с автомобилем — вовсе не панацея от всех бед, поскольку изменять вышеописанную величину можно лишь в очень небольшом интервале значений, в противном случае недостатки многократно превысят достигнутый положительный эффект. В этом случае стоит помнить и о том, что ваш спидометр потребует корректировки, постольку его значения уже не будут отражать реальную скорость автомобиля.

Такой тип тюнинга может быть относительно простым как в переднеприводном, так и в заднеприводном автомобиле, но в некоторых передне- и полноприводных автомобилях осуществить его невозможно. Многие автомобили используют трансмиссию, которая имеет встроенный дифференциал, что означает, что окончательное передаточное число не может быть так легко изменено.

Кроме того, некоторые автомобили (например, Audi R8) имеют разные главные передаточные пары в приводах на переднюю и заднюю оси.

К сожалению, все больше и больше автомобилей выбирают интегрированные устройства, что делает невозможным работу с ними, если вы не воспользуетесь услугами лицензированных тюнинг-ателье и не заплатите слишком большие суммы денег. В любом случае, производитель подбирал параметры трансмиссии, исходя из особенностей эксплуатации, характеристик мотора, возможной нагрузки и целевой аудитории автомобиля, так что внесение столь существенных изменений, давая выигрыш в одной из сфер использования, существенно сокращает остальные.

Теория механизмов и машин

В теории механизмов и машин, передаточным отношением звена или механизма называют отношение угловых скоростей (либо мгновенных перемещений, в случае линейного передаточного числа механизма) входного и выходного звеньев. Таким образом, отличие здесь в том, что потери механизма не учитываются (нулевые), и в некоторых случае, соотношение меняется при работе механизма (передаточное отношение при работе кривошипно-шатунного механизма). Формула для угловых координат:

i=ω1ω2{\displaystyle i={\frac {\omega _{1}}{\omega _{2}}}}, где
ω1,ω2{\displaystyle \omega _{1},\omega _{2}} — угловые скорости звеньев.

В рядовых механизмах общее передаточное отношение равняется произведению частных.

Передаточное отношение зубчатой передачи

Так называется механизм, в котором используются колеса с зубьями, находящимися в зацеплении. Она считается наиболее рациональной и востребованной для машиностроения. Существует множество разнообразных вариантов изготовления подобных колес, отличающихся по расположению осей, форме зубьев, способу их зацепления и т.д. Как в случае с цепной, для зубчатой передаточное число определяется делением числа зубьев шестерен (z2/z1).

Многообразие вариантов построения зубчатой передачи предоставляет возможность использовать их в разных условиях, от тихоходного редуктора до высокоточных приводов.

Передаточное отношение

  • постоянное передаточное число;
  • компактность;
  • высокий кпд;
  • надежность.

Одной из разновидностей зубчатой передачи считается червячная. Она используется в тех случаях, когда передача момента осуществляется между скрещивающимися валами, для чего применяется такой элемент как червяк, представляющий собой винт специальной конструкции с резьбой. Для определения передаточного отношения червячной передачи выполняют деление количества зубьев колеса (червячного) z2 на число заходов резьбы червяка z1.

Общее определение

Редуктор, как конструкционный элемент, применяется в множестве механизмов. Это технический узел, необходимый для коррекции скорости вращения при передаче движения. Изобретение и распространение редукторов произошло во время развития двигателей разного типа. Это объясняется тем, что появилась необходимость превращать высокую оборотную скорость в усилие крутящего момента, или же наоборот. Для различных целей существует множество разновидностей редукторов, выбор которых играет важнейшую роль для нормального функционирования механизмов.

Передаточное отношение редуктора обозначается мультипликатором, который свидетельствует о типе механизма: понижающий он, или понижающий. Понижающие передаточные редукторы имеют мультипликатор больше 1, редуктор с передаточным числом менее 1 называется повышающим.

Передаточное отношение

В автомобилях редуктора используются для перенаправления силового импульса на колеса с коробки передач, причем всегда скорость вращения снижается. Передаточное число — показатель того, во сколько раз скорость уменьшится. Если передаточное число равняется 4 — это означает, что крутящий момент, передающийся с редуктора на ось, в 4 раза меньше, чем скорость вращения трансмиссии.

Обычно такой механизм устанавливается на ведущую ось, если автомобиль является полноприводным, то устанавливаются два, по одному на каждую ось.

Редуктор не обязательно должен строго соответствовать установленным заводским параметрам, в некоторых случаях при поломке можно заменить на новый узел с меньшим или большим передаточным числом. Как проверить, какой механизм подойдет? Обычно можно делать замену на модели, в которых номинальное передаточное число отличаются не более чем на 0,5 в большую или меньшую сторону. Если взять, к примеру, редукторы автомобилей ВАЗ, есть возможность устанавливать 4 модели. Соответственно скорость работы редуктора уменьшается при увеличении передаточного числа.

Поэтому скорость автомобиля напрямую зависит от скорости работы редуктора, и с помощью замены этого узла можно сделать свой автомобиль более шустрым, например, поставив узел с передаточным числом 20.

При замене узла на модель с большим или меньшим числом, стоит позаботиться о правильной работе спидометра. Так как очень часто он начинает показывать некорректные показатели. Нужно либо заменить тросик, при серьезном сбое, либо просто отрегулировать спидометр.

Что удивительно, при замене редуктора, снять старый и установить новый это самое простое, сложнее всего все правильно отрегулировать и настроить, чтобы общее передаточное число соответствовало необходимым параметрам. Если это не удастся, то даже самый качественный редуктор может быстро выйти из строя.

2.6.2. Передаточное отношение

Пусть
при кинематическом анализе
кривошипно-ползунного механизма (рис.
2.19а) мы исследуем вращательное движение
шатуна 2. При движении от нижнего положения
ползуна график угловой скорости шатуна
будет иметь вид, показанный на рис.
2.19б.Передаточное отношение

Дальнейшие
действия аналогичны тому, что выполнялось
для передаточных функций. Собственно
передаточное отношение это вид
передаточной функции. Форма графика 2зависит от сочетания размеров механизма,
то есть от еговнутреннихсвойств.
А размах – от величины угловой скорости
входного кривошипа1,
то есть отвнешнегосигнала.

Угловая
скорость это первая производная от угла
поворота по времени:

2=d2dt.

В этом
выражении внутренние и внешние свойства
перемешаны. Разделим их, расписав полную
производную по времени через частные
– по обобщённой координате и времени:

Теперь первый
сомножитель i21,
названный передаточным отношением,
содержит информацию о внутренних
свойствах механизма, а второй1– о внешнем сигнале.

Физический
смысл передаточного отношения становится
очевиден, если его записать так: i21=21,
то есть это угловая скорость шатуна при1 = 1. Следовательно,
для её построения достаточно произвести
кинематический анализ механизма,
например, методом векторных контуров
при1 = 1,1
= 0.

Обобщим
полученный результат. Передаточным
отношением от звена с номером jк звену с номеромkназывается отношение угловых скоростей
звеньев:

ijk
= jk.

Для
рассмотренного рычажного механизма
передаточное отношение i21это величина переменная, а, например,
для подавляющего большинства зубчатых
механизмов – это константа. Но этот
вопрос рассмотрен в соответствующем
разделе данного пособия.

Плоские трехзвенные передачи

Трехзвенная
плоская передача получится если на двух
цилиндрах, соприкасающихся по образующей
выбрать два участка и нарезать на них
зубья. Плоской передача будет потому,
что при движении точки звеньев будут
перемещаться в параллельных плоскостях.

При
использовании для образования передачи
круговых цилиндров может получиться
какцилиндрическая зубчатая передача
с внешним зацеплением , так и с внутренним
зацеплением.

Условные
обозначения на схемах кинематических
пар регламентируются ГОСТ 2.770-68.

Трехзвенная
зубчатая передача внешнего зацепления
изображается так:

Передаточное отношение

На
рисунке изображены две проекции этой
передачи, причем вид с боку показан в
двух вариантах с прямоугольным
изображением зубчатых колес и в виде
профиля. На рисунке на двух проекция
изображена картина скоростей двух
зубчатых колес и показаны направление
вращения двух звеньев 1 и 2 в виде круглых
стрелок угловых скоростей 1и2 и в виде
векторов оборотовn1иn1. Как видно из
рисунка , направление вращения двух
звеньев противоположное, наклон эпюр
скоростей на картине скоростей
противоположный. Очевидно передаточное
отношение будет отрицательным.

В
добавлении к ГОСТа здесь изображена
не кинематическая пара, а трехзвенная
передача. Поэтому показана стойка и
соответствующие кинематические пары.
Неподвижное крепление колес на валах
показывают крестиками.

Изображение
зубчатых колес перпендикулярные осям
выполняются штрих-пунктирными линиями.

Изображения
параллельные осям могут быть трех видов.
Цилиндрические зубчатые передачи могут
иметь: а\ прямые зубья, б\ косые зубья,
в\ шевронные зубья. На схемах это
показывается тремя соответствующими
линиями по одну сторону от контактной
линии зубчатых колес.

Для
цилиндрической передачи внешнего
зацепления передаточное отношение в
соответствии с определением запишется
как:

Выведем
передаточное отношение через числа
зубьев колес. Поскольку в полюсе
зацепления окружная скорость колес
одинакова, за одну минуту через полюс
пройдет одинаковое число шагов

pz1n1=
pz2n2

Шаги
на начальных окружностях одинаковые ,
поэтому

Необходимо
запомнить , что передаточное отношение
u12через
числа зубьев подсчитывается прямо как
n1 n2, а через числе зубьев наоборот как
z2z1

Расчет передаточного числа редуктора онлайн калькулятор

Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.

Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)

Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска

Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов. Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка)

Если шестой передачи нет, вводите ноль. Нажмите кнопку «Рассчитать КПП».

Данный тюнинг-калькулятор поможет Вам просчитать изменения в поведении и характеристиках вашего внедорожника при замене колес, двигателя, коробки передач и т.д.

— Введите характеристики оборудования до и после тюнинга Вам достаточно ввести характеристики оборудования до и после тюнинга.

* Максимальная скорость вычисляется из передаточных чисел трансмиссии, оборотов двигателя и размеров шин. Но двигатель может оказатся недостаточно мощным и реальная максимальная скорость будет меньше, чем подсчитанная. ** Вычисление тяги и максимального угла подъема происходит без учета сил трения и сцепления колес с землей и могут быть меньше, чем подсчитанные. *** Если на автомобиль установлены редукторные мосты, то показатель КПД следует уменьшить до 82%.

В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.

При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:

  • тип редуктора;
  • мощность;
  • обороты на выходе;
  • передаточное число редуктора;
  • конструкция входного и выходного валов;
  • тип монтажа;
  • дополнительные функции.

2 Построение внешней скоростной характеристики

Cкоростная
характеристика двигателя представляет
собой зависимость эффективной мощности
и крутящего моментадвигателя при установившемся режиме
его работы от угловой скорости коленчатого
вала двигателяили частоты его вращения.

Для
заполнения «таблицы 2.1 — Данные для
построения графиков внешней скоростной
характеристики двигателя и оценки
тягово-скоростной свойств автомобиля»
будем использовать следующие формулы:

Для
нахождения стендовой мощности:

где
a,b,c
взяты из пункта 1.5 .

Для
нахождения мощности двигателя при его
эксплуатации:

где

Для
нахождения стендового момента:

Для
нахождения момента двигателя при его
эксплуатации:

Для каждой
из передач определяем коэффициент
учета вращающичся масс автомобиля:

Где для одиночных автомобилей при их
номинальной нагрузке можно считать,
что

Для нахождения
скорости автомобиля:

Для нахождения
окружной силы на ведущих колёсах:

Для нахождения
коэффициента сопротивления качению:

Где коэффициент сопротивления качению
при движении автомобиля с малой скоростью
принимаем
.

Для нахождения
силы сопротивления качению:

Для нахождения
силы сопротивления воздуха движению
автомобиля:

Где
берём из пункта 1.4 .

Для нахождения
динамической характеристики автомобиля:

Для нахождения
прямолинейного ускорения автомобиля:

Результаты
расчета сведены в таблицу 2.1.

Таблицы
2.1 — Данные для построения графиков
внешней скоростной характеристики
двигателя и оценки тягово-скоростной
свойств автомобиля.

Параметры

Частота
вращения коленчатого вала, об/мин

Обозна-чение

Параметр

600

1300

2000

2823,53

3400

4100

4800

5136

ne\np

0,13

0,27

0,42

0,59

0,71

0,85

1,00

1,07

pe
ст

кВт

10,73

28,34

48,50

71,33

84,20

93,60

93,27

88,76

pe

кВт

10,19

26,92

46,07

67,76

79,99

88,92

88,61

84,32

M
e ст

Нм

170,79

208,17

231,58

241,25

236,51

218,03

185,58

165,04

M
e

Нм

162,25

197,76

220,00

229,19

224,69

207,13

176,30

156,79

Передача
1

U1=2.95
,δ1=1.388

Va

6,06

13,13

20,19

28,51

34,33

41,40

48,47

51,86

Fk

5573,4

6793,3

7557,4

7872,8

7718,3

7115,0

6056,0

5385,8

f

0,0070

0,0070

0,0071

0,0072

0,0073

0,0074

0,0076

0,0077

Ff

123,3

123,9

125,0

126,7

128,4

130,7

133,6

135,1

1,4

6,6

15,7

31,4

45,5

66,1

90,6

103,8

D

0,3167

0,3858

0,4287

0,4457

0,4361

0,4007

0,3391

0,3002

ax

2,19

2,68

2,98

3,10

3,03

2,78

2,34

2,07

Передача
2

U2=2.06,
δ2=2097

Va

8,68

18,80

28,92

40,83

49,16

59,28

69,40

74,26

Fk

3892,0

4743,8

5277,4

5497,6

5389,7

4968,5

4228,9

3760,9

f

0,0070

0,0071

0,0072

0,0074

0,0076

0,0079

0,0082

0,0084

Ff

123,5

124,7

126,9

130,5

133,9

138,7

144,5

147,6

2,9

13,6

32,3

64,3

93,2

135,6

185,8

212,8

D

0,2211

0,2689

0,2981

0,3088

0,3011

0,2747

0,2298

0,2017

ax

1,74

2,12

2,36

2,44

2,38

2,16

1,80

1,57

Передача
3

U3=1.43,
δ3=1.128

Va

12,50

27,08

41,66

58,81

70,82

85,40

99,98

106,98

Fk

2701,7

3293,0

3663,4

3816,3

3741,4

3449,0

2935,6

2610,7

f

0,0070

0,0072

0,0074

0,0079

0,0083

0,0088

0,0095

0,0099

Ff

124

126

131

138

145

155

167

174

6,0

28,3

67,0

133,4

193,5

281,4

385,7

441,5

D

0,2

0,2

0,2

0,2

0,2

0,2

0,1

0,1

ax

1,28

1,56

1,72

1,76

1,69

1,50

1,18

0,99

Передача
4

U4=1,δ4=1.08

Va

17,87

38,72

59,57

84,10

101,27

122,12

142,97

152,98

Fk

1889,3

2302,8

2561,8

2668,8

2616,4

2411,9

2052,9

1825,7

f

0,0071

0,0074

0,0079

0,0088

0,0096

0,0108

0,0122

0,0129

Ff

124,6

129,8

138,9

154,5

168,6

189,3

213,8

226,9

12,3

57,8

136,9

272,9

395,7

575,4

788,6

902,9

D

0,1067

0,1276

0,1378

0,1362

0,1262

0,1044

0,0719

0,0525

ax

0,90

1,09

1,18

1,16

1,06

0,85

0,54

0,36

Передача
5

U5=0.9,δ5=1.0724

Va

19,86

43,02

66,19

93,45

112,52

135,69

158,86

169,98

Fk

1700,4

2072,5

2305,6

2401,9

2354,7

2170,7

1847,6

1643,1

f

0,0071

0,0075

0,0081

0,0092

0,0102

0,0116

0,0134

0,0143

Ff

124,9

131,4

142,6

161,9

179,3

204,8

235,0

251,2

15,2

71,4

169,0

336,9

488,5

710,3

973,6

1114,7

D

0,0958

0,1137

0,1215

0,1174

0,1061

0,0830

0,0497

0,0300

ax

0,81

0,97

1,04

0,99

0,88

0,65

0,33

0,14

Определения

Эти термины важно запомнить. Ведущая ветвь ремня — набегает на ведущий шкив

При работе передачи растягивается

Ведущая ветвь ремня — набегает на ведущий шкив. При работе передачи растягивается.

Ведомая ветвь ремня — сходит с ведущего ремня и набегает на ведомый. При работе передачи расслабляется.

Межосевое (межцентровое) расстояние – кратчайшее расстояние между осями шкивов.

Натяжной ролик (леникс, от нем. lenix, lenixrolle — натяжной ролик) – элемент ремённой или цепной передачи; свободно вращающееся на оси колесо (шкив, звездочка, ролик), которое используется для регулирования натяжения ремня или цепи. Например, используется в тракторах для натяжения гусениц или в двигателе автомобиля для натяжения ремня ГРМ (газораспределительного механизма).

Пассик (от польского pasek — ремешок) – исторически вошедшее в наш оборот название приводного ремня круглого сечения. Слово «пассик» имеет польское происхождение. Его появление в русском словаре связывают с 80-ми годах 20-го века, когда им называли соответствующий элемент в импортном польском магнитофоне. Пассик, как правило, выполнен из резины или других полимерных материалов. Пассики использовались в устройстве протяжного механизма магнитной ленты старого кассетного магнитофона – он хорошо сглаживал рывки от электромотора и предохранял от искажений звука. «Пассики» входят в комплект конструктора Lego WeDo или ресурсного набора Lego MINDSTORMS Education EV3. В общем, всякий пассик — приводной ремень, но не каждый приводной ремень – пассик.

Приводной ремень – гибкий замкнутый элемент (ремень) для передачи вращения между двумя шкивами. Вращение передается за счет силы трения (гладкий ремень) или силы зацепления (ремень с зубчиками). Может иметь разную форму: бывают плоские ремни, зубчатые ремни, клиновидные ремни.

Ремённая передача (англ. belt drive)– механизм, предназначенный для передачи вращательного движения с помощью силы трения или зубчатого зацепления замкнутой гибкой связи (ремня) с помощью колес (шкивов), закрепленных на входном и выходном вале.

Угол обхвата – угол прилегания ремня к шкиву.

Шкив – фрикционное (англ. friction — трение) колесо с ободом или канавкой по окружности. Передает или принимает движение от приводного ремня. В отличие от блока, который имеет похожую форму, шкив всегда передавет усилие с оси на ремень, либо принимает усилие с ремня на ось. Блок же всегда свободно вращается на оси и обеспечивает изменение направления движения каната/троса, а также изменяет прикладываемую силу.