Окисление и восстановление

Введение

С основной и изначальной точки зрения, окисление – это процесс химического характера, что сопровождается увеличением степени атомарного окисления вещества, которое ему подвергается. Это явление происходит, благодаря передаче электронов от одного атома (восстановителя и донора) до второго (акцептора и окислителя).

Окисление и восстановление

Данная терминологическая единица была введена в оборот химии в начале XIX века, а сделал это академик В.М. Севергин для создания обозначения, указывающего на взаимодействие веществ с кислородом из атмосферного воздуха.

В некоторых случаях окисление молекулы сопровождается созданием нестабильности в структуре вещества и приводит к его распаду на молекулы, обладающие большей стабильностью и маленькими размерами. Дело в том, что данный процесс повторяться может на нескольких разных уровнях измельчения. То есть, образованная более маленькая частица может также обладать более высокой степенью окисления, чем атомарные частички, что были исходными в том же веществе, но крупнее и стабильнее.

В химии есть понятие низшей и высшей степени окисления. Это позволяет классифицировать атомы по возможности их проявлять данное свойство. Высшая окислительная степень соответствует номеру группы, в котором находится элемент. Низшая степень, как правило, определяется по соответствию четного и нечетного числа: высшая 8 = низшая 2, высшая 7 = низшая 1.

Биологическое окисление

В биологии реакции окисления – это процессы, что в своей совокупности сходятся к изменению степени окисления атомов, участвующих в реакции, а происходит это благодаря электронному распределению между взаимодействующими компонентами.

Первое предположение о том, что во всех живых организмах протекают сложнейшие хим. реакции, было выдвинуто в восемнадцатом столетии. Изучал проблему химик из Франции А. Лавуазье

Он обратил внимание на то, что протекание горения и окисления в биологии являются схожими друг с другом

Учеными было совершено исследование пути кислорода, что был поглощен живом существом вследствие дыхания. Они сообщили, что данные процессы окисления – это аналогичные процессы, протекающие с разной скоростью

Он заострил внимание на процессе разложения, в основе которого, как оказалось, лежит явление взаимодействия молекулы кислорода (окислителя) с органическим веществом, включающим в себя атомы углерода и/или водорода. Вследствие разложения происходит абсолютная трансформация вещества

Оставались моменты процесса, которые ученые не могли до конца понять, среди которых вопросы:

  • По какой причине осуществляется окисление в условиях низкой температуры тела, несмотря на его наличие вне организма, только при высокой температуре.
  • По какой причине реакции окисления – это явления, которые не сопровождаются выбросом пламени, а также огромными выбросами высвободившейся энергии.
  • Как осуществляется «горение» питательного ряда веществ в теле, если оно на 80% (приблизительно), состоит из жидкости – воды H2O.

Окисление и восстановление

Получение энергии живым организмом

В биологии окисление – это многосоставное явление:

  • Гликолиз – начальная стадия организмов-гетеротрофов, в ходе которого моносахариды расщепляются бескислородно, и оно предшествует началу процесса клеточного дыхания.
  • Окисление пирувата – преобразования пировиноградных кислот в ацетилкоэнзим. Данные реакции возможны только с участием ферментных комплексов пируватдегидрогеназы.
  • Процесс распада бета-жирных кислот – параллельно осуществляемое с окислением пирувата явление, целью которого является переработка каждой жирной кислоты в ацетилкоэнзим. Далее это вещество поставляется в цикл кислот трикарбоновой группы.
  • Цикл Кребса – превращение ацетилкоэнзима в лимонные кислоты и дальнейшее подвержение последующему преобразованию (явлениям дегидрирования, декарбоксилирования и регенерации).
  • Окислительное фосфорилирование – последний этап преобразования, в ходе которого эукариотический организм преобразует аденозиндифосфат в аденозинтрифосфорные кислоты.

Окисление и восстановление

Из этого следует, что окисление – это процесс, включающий в себя:

  • явление отщепления водорода от субстрата, что подвергается окислению (дегидрированию);
  • явление отдачи электрона субстратом;
  • явление присоединения молекулы кислорода к субстрату.

Значение слова Окисление по словарю Брокгауза и Ефрона:

Окисление — Под этим названием разумеются химические взаимодействия или процессы, при которых происходит соединение тел с кислородом. В статьях Горение и Кислород рассмотрены многочисленные и разнообразные случаи О. тел как простых, так и сложных, а равно указаны и условия, соблюдение которых необходимо для совершения этого рода реакций. О некоторых частных случаях О. см. в ст. Гниение, Дыхание, Дерево (тление), Селитра, Уксус, Ржавчина (см. также Железо, Медь), Крепкая водка, Альдегиды, Кетоны, Органические кислоты, Спирты, а также при словах, указанных в ст. Окислители. Переход соединений, отвечающих низшим формам окислов (см.), в высшие, например солей закиси железа, меди, олова и др. в соответствующие соли окиси, также представляет реакцию О. хотя часто он и не сопровождается непосредственным присоединением кислорода. Таково, например, превращение хлористого олова SnCl 2 в хлорное SnCl 4, легко совершающееся в водных растворах при действии кислорода воздуха в присутствии соляной кислоты или при действии хлора и др. окислителей (SnCl 2 +2HCl + O = SnCl42O. SnCl2 + Cl2 = SnCl4), О. желтой соли K 4FeCy6 (см.) в красную или соль Гмелина K 3FeCy6 (см.) под влиянием хлора (K 4FeCy6 + Cl = K3FeCy6 + KCl) и т. п. В зависимости от условий (температуры, прикосновения, присутствия третьих тел, избытка кислорода, энергии окислителя и мн. др.) О. как простых тел, если они способны образовать несколько окислов (см.) с разным содержанием кислорода, так и особенно сложных, может идти более или менее глубоко и принимать, в смысле получения тел или других продуктов, различное направление. Так, например, медь при избытке кислорода и не слишком высокой температуре дает окись CuO, a при малом доступе воздуха и в белокалильном жару главным образом закись Cu 2 O (см. Медь). сера, сгорая на воздухе, превращается в сернистый ангидрид SO 2, а при О. дымящей азотной кислотой — в серную кислоту Н 24, отвечающую серному ангидриду SO 3. сернистый водород H 2 S той же дымящей азотной кислотой окисляется в серную кислоту (Н 2S + 2O2 = H2SO4), а свободно сгорая на воздухе дает воду и SO 22S + 3O = H2O + SO2). если же уменьшить приток воздуха или понизить температуру пламени, вводя в него холодный предмет, то сгорает один водород, а сера выделяется в свободном состоянии и садится в виде порошковатого налета (Н 2 S + O = Н 2 O + S). Но особенно в этом отношении велико разнообразие, которое представляют при реакциях О. органические вещества. Возьмем обыкновенный винный спирт. При горении он превращается в воду и углекислоту (C 2H6O + 3O2 = 2CO2 + 3H2 О), хромовой смесью окисляется в альдегид и воду (C 2H6O + O = C2H4O + H2 O), при брожении под влиянием грибка Mycoderma aceti окисляется кислородом воздуха в уксусную кислоту и воду (С 2H6 О + O 2 = C2H4O2 + H2 O), с умеренно разведенной азотной кислотой дает глиоксаль C 2H2O2, гликолевую кислоту C 2H4O3, щавелевую C 2H2O4 и др. продукты. Более сложные органические вещества, весьма часто распадающиеся при О. на частицы с меньшим числом атомов углерода, чем первоначальные, могут давать еще большее разнообразие направлений реакции, а, следовательно, и продуктов, причем нередко, при надлежащем выборе окислителей и условий, О. их протекает с известной правильностью, позволяющей пользоваться им для суждения о строении (см.) частиц окисляемых соединений (см. Кетоны и др. упомянутые выше статьи). О применении О. при анализе см. Органический анализ, Оксидиметрия. Исторические данные см. Лавуазье, Флогистон. П. Рубцов. &#916. .

Важнейшие окислители и восстановители

Все химические элементы можно разделить на два больших класса — элементы с постоянными степенями окисления (такие элементы, как правило, не меняют свою степень окисления в сложных веществах), и элементы с переменной степенью окисления (такие элементы легко отдают или принимают электроны). По этой причине свойства сложных веществ обусловлены наличием в их составе элементов с переменной степенью окисления.

В свою очередь, элементы с переменной степенью окисления подразделяются на три категории:

  • элементы с высшей степенью окисления — такие элементы могут только понижать свою степень окисления (участвовать в процессе восстановления), следовательно, вещество, в состав которого входят такие элементы, может выступать только в роли окислителя (присоединять электроны), например, перманганат калия (марганцовка) может быть только окислителем, поскольку марганец в KMnO4 имеет высшую степень окисления +7.
  • элементы с низшей степенью окисления — такие элементы могут только повышать свою степень окисления (участвовать в процесс окисления), следовательно, вещество, в состав которого входят такие элементы, может выступать только в роли восстановителя (отдавать электроны), например, аммиак является восстановителем, поскольку, азот, входящий в состав NH3, имеет низшую степень окисления -3.
  • элементы с промежуточной степенью окисления — такие элементы могут, как отдавать электроны, так и принимать их (все зависит от «партнера» по реакции), следовательно, вещество, в состав которого входят такие элементы, может быть, как окислителем, так и восстановителем, например, сера, входящая в состав сульфита натрия Na2SO3, имеет промежуточную степень окисления +4, по этой причине сульфит натрия в реакции с перманганатом калия окисляется до сульфата натрия (является восстановителем), а в реакции с сероводородом сульфит натрия восстанавливается до свободной серы (является окислителем).

Активные окислители:

  • простые вещества:
    • кислород (O2);
    • фтор (F2);
  • сложные вещества:
    • перманганат калия (KMnO4);
    • хроматы и дихроматы (K2Cr2O7);
    • азотная кислота и ее соли (HNO3);
    • хлорная кислота и ее соли (HClO4);
    • концентрированная серная кислота (H2SO4);
    • оксид свинца (PbO2).

Активные восстановители:

  • все простые вещества-металлы, наиболее активные:
    • щелочные металлы;
    • щелочноземельные металлы;
    • магний (Mg);
    • алюминий (Al);
    • цинк (Zn).
  • сложные вещества:
    • метан (CH4);
    • аммиак(NH3);
    • силан(SiH4);
    • фосфин(PH3);
    • нитриды и фосфиды металлов (Na3N, Ca3P2)
    • сероводород (H2S)
    • галогеноводороды (HI, HBr, HCl)
    • сульфиды и галогениды металлов
    • гидриды металлов (NaH, CaH2)

промежуточной степенью окисления

  • чаще являются окислителями:
    • галогены (Cl2; Br2);
    • хлорноватистая кислота (HClO) и ее соли (гипохлораты, хлораты);
    • оксид марганца (IV) MnO2;
    • соли трехвалентного железа (FeCl3)
  • чаще являются восстановителями:
    • водород (H2);
    • углерод (C);
    • оксид углерода (II) CO;
    • сульфиты металлов (Na2SO3);
    • соли двухвалентного железа (FeSO4)

Разновидности окислительно-восстановительных реакций:

  • межмолекулярные — окислитель и восстановитель являются разными веществами:
    N2+H2→N-3H3+1
  • внутримолекулярные — окислитель и восстановитель входят в состав одного вещества:

    N-3H4N+3O2→N2+H2O
    
  • реакции диспропорционирования — окисляется и восстанавливается один и тот же элемент, находящийся в промежуточной степени окисления:

    N+4O2+H2O→HN+5O3+3+HNO2

Реакция над металлами

Окисление металла – это реакция, в ходе которой посредством взаимодействия элемента из группы металлов и O2, происходит образование окислов (оксидов).

В широком значении – реакция, в которой атом теряет электрон и создает разнообразные соединения, например, вещества хлоридов, сульфидов и т. п. В природном состоянии чаще всего металлы находиться могут лишь в полностью окисленном состоянии (в виде руды). Именно по этой причине, процесс окисления представлен в виде реакции восстановления различных компонентов соединения. Практически применяемые вещества металлов и их сплавов при взаимодействии с окружающей средой постепенно окисляются – подвергаются коррозии. Процессы окисления металлов происходят, благодаря термодинамическим и кинетическим факторам.

Окисление и восстановление

Горение

Горение – это процесс окисления. В атмосферном воздухе (а также в среде чистого кислорода) могут поддаваться окислению в форме горения. Примером могут служить разнообразные вещества: простейшие элементы веществ металлов и неметаллов, неорганические и органические соединения. Однако самым практически значимым является горючее вещество (топливо), среди которых выделяют природные запасы нефти, газов, угля, торфа и т. д. Чаще всего они образуют из сложной смеси углеводородов с малой долей кислорода, серы, азотосодержащих соединений органического типа, а также включениями следового количества прочих элементов.

Окисление и восстановление

Виды биологического окисления

В соответствии с условиями среды, в которой происходит окисление, его делят на два вида. Большинство грибков и микроорганизмов энергетические ресурсы получают путем преобразования питательного вещества посредством анаэробного способа. Данная реакция происходит без доступа молекулярного кислорода, а также ее называют гликолизом.

Более сложным способом преобразования веществ питания является аэробная форма биологического окисления или тканевого дыхания. Отсутствие кислорода вызывает неспособность клеток осуществлять окисление для получения энергии, и они гибнут.

Окисление и восстановление

Реакция над водой

Окисление и восстановление

Более двух млрд лет тому назад, растительные организмы совершили один из важнейших шагов на пути к началу эволюции. Начал формироваться процесс фотосинтеза. Однако изначально подвергались фотоокислению только восстановленные вещества сероводородного типа, что были представлены на земле в крайне малых размерах. Окисление воды – это процесс, привнесший в атмосферу значительное количество молекулярного кислорода. Это позволило перейти биоэнергетическим процессам на новый аэробный уровень. Это же явление позволило образоваться озоновому экрану, который защищает жизнь на Земле.